Inhibition of STAT3 in Gastric Cancer; Role of SHP-1 Induction

Moon Kyung Joo M.D., Ph.D. Division of Gastroenterology, Department of Internal Medicine Korea University College of Medicine Guro Hospital

Contents

- 1. Introduction
- 2. STAT3 signaling in gastric cancer
- 3. Inhibition of STAT3 in gastric cancer
- 4. SHP-1: A phosphatase to inactivate STAT3
- 5. Induction of SHP-1 to inhibit STAT3 in gastric cancer cells: role of pantoprazole
- 6. Summaries

Introduction

✓ Gastric cancer

- 3rd leading cancer-related cause of death
- 720,000 deaths per year worldwide

Herrero, R. et al. Best Pract Res Clin Gastroenterol 2014;28 (6):1107-14

Introduction

- Advanced gastric cancer
 - Chance for cure is getting lower dramatically
 - OS of non-curable stage IV gastric cancer ≤ 18 months
- A long way till the conquest of gastric cancer

STAT3 Signaling in Gastric Cancer

✓ JAK2/STAT3 signaling pathway

- Inflammatory process by chronic *H. pylori* infection
- Interaction between gastric epithelium and microenvironmental stromal cells
- Migration or invasion of cancer cells
- Inhibition of JAK2/STAT3 signaling: a reasonable option for control of multiple steps in gastric carcinogenesis and invasion

Pathways Activating JAK–STAT3 Signaling in Cancer

Yu, H. et al. Nat Rev Cancer 2014;14 (11):736-46

Constitutive Activation of STAT3 in Gastric Cancer

A. Lymph node metastasis

	present		absent		Odds Ratio Weight M-H. Random, 95% Cl		Odds Ratio M-H, Random, 95% Cl	
Study or Subgroup	Events Total		Events Total					
Choi 2015	8	160	21	183	7.3%	0.41 [0.17, 0.94	4]	
Cong 2013	35	44	15	30	6.8%	3.89 [1.40, 10.83	3]	
Deng 2013	59	68	30	46	7.1%	3.50 [1.38, 8.84	[4]	
Gao 2012	24	51	6	14	6.4%	1.19 [0.36, 3.91	1	
Gong 2015	34	36	8	17	5.2%	19.13 [3.44, 106.26	6]	
Hino 2009	12	43	44	72	7.3%	0.25 [0.11, 0.56	6]	
Inokuchi 2011	35	67	17	59	7.5%	2.70 [1.29, 5.66	6]	
Liu 2015	60	81	25	38	7.3%	1.49 [0.65, 3.42	2]	
Lu 2013	34	36	8	17	5.2%	19.13 [3.44, 106.26	6]	
Qiao 2009	48	50	8	10	4.3%	6.00 [0.74, 48.90	0]	
Song 2014	31	41	4	19	6.1%	11.63 [3.13, 43.22	2]	
Wei 2015	51	78	8	20	6.9%	2.83 [1.03, 7.77	7]	
Woo 2011	56	183	47	102	7.9%	0.52 [0.31, 0.85	5]	
Yakata 2007	24	32	28	79	7.1%	5.46 [2.17, 13.76	6]	
Zhang 2010	86	129	21	49	7.6%	2.67 [1.36, 5.23	3]	
Total (95% CI)		1099		755	100.0%	2.40 [1.28, 4.50	0]	
Total events	597		290					
Heterogeneity: Tau ² =	1.24; Chi ²	= 94.2	6, df = 14	(P<0	.00001); P	= 85%		
Test for overall effect:	Z = 2.72 (P = 0.0	07)				0.01 0.1 1 10 100	
(A)							Favours [experimental] Favours [control]	

B. Tumor differentiation

	poor	ly	well-moderately		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Choi 2006	22	87	3	50	8.6%	5.30 [1.50, 18.76]		
Cong 2013	40	43	10	31	8.0%	28.00 [6.95, 112.88]		
Gong 2015	34	37	8	16	7.4%	11.33 [2.44, 52.56]		
Liu 2015	76	100	9	19	9.9%	3.52 [1.28, 9.67]		
Lu 2013	34	37	8	16	7.4%	11.33 [2.44, 52.56]		
Qiao 2009	33	35	23	25	5.5%	1.43 [0.19, 10.94]		
Song 2014	25	34	10	26	9.4%	4.44 [1.48, 13.32]		
Wei 2015	50	73	9	25	10.1%	3.86 [1.49, 10.04]		
Xiong 2012	105	182	31	80	12.1%	2.16 [1.26, 3.69]		
Yakata 2007	18	26	29	57	10.0%	2.17 [0.81, 5.80]		
Zhang 2010	39	74	47	74	11.6%	0.64 [0.33, 1.24]		
Total (95% CI)		728		419	100.0%	3.70 [1.98, 6.93]	•	
Total events	476		187					
Heterogeneity: Tau ² =	0.77; Chi ²	= 39.7	9. df = 10 (P	< 0.000	1); 2 = 75	%		
Test for overall effect:	Z = 4.10 (P < 0.0	001)			E	0.01 0.1 1 10 100	
(B)							avours lexhennental ravours [connoi]	

Ji, K. et al. Medicine (Baltimore) 2016;95(5):e2641

STAT3 inhibition in gastric cancer

Most of STAT3 inhibitors have been evaluated in experimental studies.

- ✓ Strategies to inhibit STAT3 activity
 - Direct inhibition of STAT3 targeting
 - Src homology 2 (SH2) domain
 - DNA binding domain
 - N-terminal domain
 - Oligonucleotide-based inhibition (i.e. siRNA, decoy oligonucleotide technology)
 - Indirect inhibition of upstream intracellular kinases (i.e. JAK2, Src kinase)

Yue, P. et al. Expert Opin Investig Drugs 2009;18 (1):45-56

Experimental STAT3 Inhibitors in Gastric Cancer

Inhibitor	Study design	Functional effects	Suggested mechanism of STAT3 inhibition	Reference
Flucoxanthin	In witho	Cell cycle arrest	Not presented	(<u>Yu et al. 2011</u>)
	<i>IN VIIIO</i>	↑ Apoptosis	Not presented	
DDP	In vitro	↓ Chemoresistance	Not presented	(<u>Huang et al. 2012</u>)
		↑ Apoptosis	Not presented	
Honokiol	In vitro/in vivo	\downarrow Angiogenesis and peritoneal	Increase of SHD 1	(<u>Liu et al. 2012</u>)
		Dissemination		
OPB-31121	In vitro/in vivo	↑ Apoptosis	Downregulation of JAK2	(<u>Kim et al. 2013</u>)
		Synergism with 5-FU and cisplatin	SH2 domain of STAT3	
		↑ Apoptosis		
Pantoprazole	In vitro	\downarrow Secretion of pro-inflammatory	Not presented	(<u>Huang et al. 2013</u>)
		cytokine (IL-6)		
AZD 1480	In vivo	↑ Apoptosis	Inhibition of $IAK1/2$ phosphorylation	(Stuart at al. 2014)
		↓ IL-11	minorition of JAR1/2 phosphorylation	(<u>Stuart et al. 2014</u>)
WP1066	In vitro/in vivo	↓ Pro-inflammatory cytokines	Inhibition of IAK2 phosphorylation	(Judd et al. 2014)
		(IL-11, IL-6, IL-1β)	minoriton of JAR2 phosphorylation	
Plumbagin	In vitro	↓ Migration/invasion	Induction of SHP-1	(<u>Joo et al. 2015</u>)
		↑ Apoptosis	induction of STIT -1	
Salinomycin	In vitro/in vivo	↓ Angiogenesis	Not presented	(Lietal 2016)
		\downarrow VEGFR2 phosphorylation	Not presented	(<u>Li et al. 2010</u>)
JSI-124	In vitro/in vivo	↓ Angiogenesis	Not presented	(Wu et al. 2016)
		↓ VEGF	Not presented	(<u>wa ct al. 2010</u>)

STAT3 Inhibitors in Gastric Cancer - Limitations -

- ✓ Only evaluated in pre-clinical studies.
- Clinical outcomes including sufficient number of gastric cancer patients are especially lacking.
- Technical difficulties to develop more suitable and effective agent directly targeting STAT3.
- > New strategy for inhibition of STAT3 activity is suggested.

SH2-containing Protein Tyrosine Phosphatase 1 (SHP-1)

SHP-1 Expression in Epithelial Cancer Cells

✓ Lack of data

- Estrogen receptor-negative breast cancer cell lines
- Prostate or pancreas cancer cell lines
- ✓ Epithelial cells in gastrointestinal (GI) tract
 - CpG promoter hypermethylation of SHP-1 in colorectal cancer cells
 - Demethylating agents (DNA methyltransferase inhibitor, 5-Aza-2'-deoxycytidine) restored SHP-1 expression to dephosphorylate JAK2/STAT3

Yip, S. et al. Int J Cancer 2000;88 (3):363-8 Zapata, P. D. et al. J Clin Endocrinol Metab 2002;87 (2):915-26

SHP-1 Expression in Gastric Cancer

Limited data

- Methylation rate: 40~70% in gastric carcinoma tissues

> Our previous study

- Promoter hypermethylation and gene/protein expression of SHP-1 in various gastric cancer cell lines.
- Functional effects of <u>SHP-1</u> on the cell proliferation and migration through the modulation of JAK2/STAT3 pathway.

SHP-1 Expression in Gastric Cancer Cells

A. Gene and protein expression C. Bisulfite pyrosequencing 5NU-638 SNU-T19 WKH-28 SHU-16 KATO-III WHAS WCI-N8' CpG island PENN SNU' SNU'S AG5 (155 bp 11 CpG sites) +1 Size (bp) Exon 1 -300 SHP-1 200 200 GAPDH MSP 100 PS SHUTSHUTSHUTSHUESBUTT, W WKW-28 MKNAS ASS KATOIN NCI-NBI Jela PBMN YG YG 7G YG 68 kDa → SHP-1 40 kDa **B**-actin MKN-28 SNU-719 AGS 82% 96% 86% **B. Methylation-specific PCR** 5441-719 5HU-638 MKH28 VATO.III MKHAS SNU-719 **MKN-28** AGS u Size (bp) m m m u m mumu m m u u u u 200 5-Aza-dc 100 PBMN#3 NCLINET PENNI PENNH TSA Size (bp) AGS 300 SHP-1 200 Size (bp) Size (bp) u m m u m m m u m u u u 200 200 200 GAPDH 100 100

100

Joo, M.K. et al. Tumour Biol 2016;37 (4):4603-12

Reinforced SHP-1 Expression in SHP-1 (-) Gastric Cancer Cells

A. Western blot

B. RT-PCR

Joo, M.K. et al. Tumour Biol 2016;37 (4):4603-12

C. Migration and Matrigel invasion assay

SHP-1 in Gastric Cancer Cells

- Protein and mRNA expression of SHP-1 was reduced or absent in most of gastric cancer cells by aberrant CpG island promoter hypermethylation.
- Reinforced SHP-1 expression in SHP-1 (-) gastric cancer cells inhibited JAK2/STAT3 activity and their target genes including cyclin D1, MMP-9, VEGF1 and survivin.
- This, in turn, suppressed cell proliferation, migration and invasion in SHP-1 transfected gastric cancer cells.

Joo, M.K. et al. Tumour Biol 2016;37 (4):4603-12

Mechanism of Aberrant SHP-1 Expression in Gastric Cancer

- TMEFF2 acts as a tumor suppressor in gastric cancer through direct interaction with SHP-1 via its intercellular domain.
- The SH2 1/2 domains of SHP-1 are important for its interaction with TMEFF2 and the tumor suppressive function of TMEFF2.

Sun, T. et al. Clin Cancer Res 2014;20 (17):4689-704

Aberrant Expression of SHP-1 and TMEFF2 in Gastric Cancer Tissues

A. Gene expression of SHP-1

B. Methylation-specific PCR

C. Overall survival according to the TMEFF2 and SHP-1 expression

Sun, T. et al. Clin Cancer Res 2014;20 (17):4689-704

Induction of SHP-1 to Inhibit p-STAT3 in Gastric Cancer

- <u>Expression of SHP-1 is minimal</u> in most of gastric cancer tissues or cell lines.
- SHP-1-induction strategy appears to be reasonable to effectively inhibit constitutive STAT3 activity and alternative therapeutic option in gastric cancer.

Induction of SHP-1 to Antagonize p-STAT3 in Gastric Cancer Cells: Pantoprazole

✓ Pantoprazole (PPZ)

- An effective proton pump inhibitor
- Unexpected effects; anti-proliferation, enhancing chemosensitivity in cancer cell
- Suggested underlying mechanism: inhibition of p-STAT3
- > To investigate the anti-invasive effect of PPZ in gastric cancer cell
- To investigate the role of SHP-1-JAK2-STAT3 signaling axis associated with anti-invasive effect of PPZ in gastric cancer cell

Materials and Methods

Human Gastric Cancer Cell Lines

(AGS cell)

Minimal SHP-1 expression Constitutive p-JAK2/p-STAT3 activity Mesenchymal phenotype

✓ Functional studies

- 3-D spheroid culture assay
- Wound closure assay
- Matrigel invasion assay

✓ Western blot / immunofluorescence

- p-JAK2/p-STAT3, SHP-1
- Mesenchymal marker (Snail1, vimentin)
- Epithelial marker (E-cadherin)

✓ Validation of SHP-1-mediated PPZ effect

- Pre-treatment with PTPase inhibitor / transfection siRNA

✓ Xenograft tumor model by using male nude mouse

- Intraperitoneal injection of
- ; PPZ (180mg/kg, 2 times weekly)
- ; PV co-IP injection (18mg/kg, 2 times weekly)

Inhibition of STAT3 via Induction of SHP-1 by PPZ in Gastric Cancer Cells

A. Western blot

B. Immunofluorescence

Anti-invasive Effect of PPZ via Induction of SHP-1 in Gastric Cancer Cells

20

Control

PPZ 40 µg/ml PPZ 80 µg/ml PPZ 160 µg/

B. 3-D spheroid culture invasion assay

Anti-invasive Effect of PPZ in Gastric Cancer **Cell is Attenuated by PTPase Inhibitor**

A. Western blot

B. Migration and Matrigel invasion assay

C. 3-D spheroid culture invasion assay

Anti-invasive Effect of PPZ in Gastric **Cancer Cell is Attenuated by SHP-1 siRNA**

A. Western blot

PPZ 160 µg/ml

+ siSHP-1

PPZ 160 µg/ml

+ siControl

B. Migration and Matrigel invasion assay

Anti-Tumor Effect of PPZ in Xenograft Tumor Model

A. Gross picture of xenograft tumors

B. Difference of tumor volume

C. Difference of body weigt

Anti-Tumor Effect of PPZ in Xenograft Tumor Model

A. Immunohistochemical stain

B. Immunofluorescence stain

Anti-Invasive Effect of PPZ in Gastric Cancer Cells

Effect of Honokiol through the Calpain II/SHP-1/STAT-3 Axis in Gastric Cancer

A. Western blot

B. Immunohistochemistry of metastatic nodule

C. A proposed mechanism for honokiol

Liu, S. H. et al. PLoS One 2012;(8):e43711

Summaries

- The biologic impact of STAT3 in gastric carcinogenesis and progression has been widely accepted in the previous studies.
- A lot of efforts have been made to effectively inhibit the STAT3 activity including direct STAT3 inhibitors, which unfortunately showed less significant clinical impacts.
- SHP-1 as an effective phosphatase for inactivation of JAK2/STAT3 may be applied in gastric cancer.
- The exploration of more effective enhancer of SHP-1 and its underlying mechanisms in gastric cancer need to be investigated.

Thank you for your attention.

