

Contents

- Definition of Cancer Cachexia
- Clinical Implications of Cancer Cachexia
- Diagnosis of Cancer Cachexia
- Pathogenesis of Cancer Cachexia
- Current Therapies of Cancer Cachexia
- CT imaging for Nutritional Assessment in Pancreatic Cancer

Contents

- Definition of Cancer Cachexia
- Clinical Implications of Cancer Cachexia
- Diagnosis of Cancer Cachexia
- Pathogenesis of Cancer Cachexia
- Current Therapies of Cancer Cachexia
- CT imaging for Nutritional Assessment in Pancreatic Cancer

What is Cachexia?

The origin of "Cachexia" kakos ("bad") + hexis ("condition")

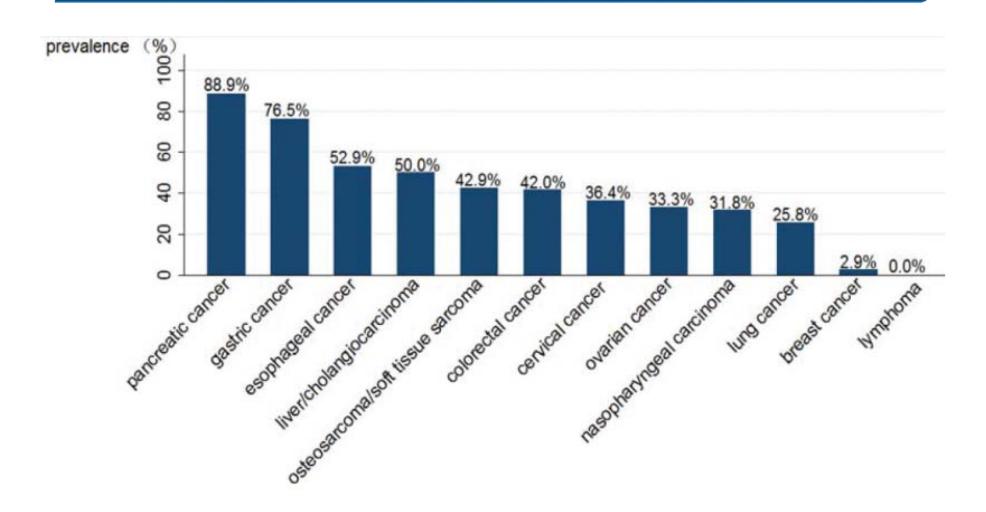
- Physical wasting with loss of skeletal and visceral muscle mass in the presence of underlying inflammation
- Multi-factorial syndrome defined by
 - 1. an ongoing loss of skeletal muscle mass (with or without loss of fat mass)
 - 2. that cannot be fully reversed by conventional nutritional support
 - 3. and leads to progressive functional impairment.

Cachexia differs from simple starvation

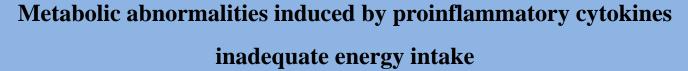
Simple starvation

- Metabolic adaptation
- Lean tissue conserved

Catabolic Weight loss


- No metabolic adaptation
- Lean tissue breakdown continues despite nutrient intake

Contents


- Definition of Cancer Cachexia
- Clinical Implications of Cancer Cachexia
- Diagnosis of Cancer Cachexia
- Pathogenesis of Cancer Cachexia
- Current Therapies of Cancer Cachexia
- CT imaging for Nutritional Assessment in Pancreatic Cancer

Clinical Implications of Cancer Cachexia

The prevalence of cachexia in cancers

Clinical outcomes of cancer cachexia

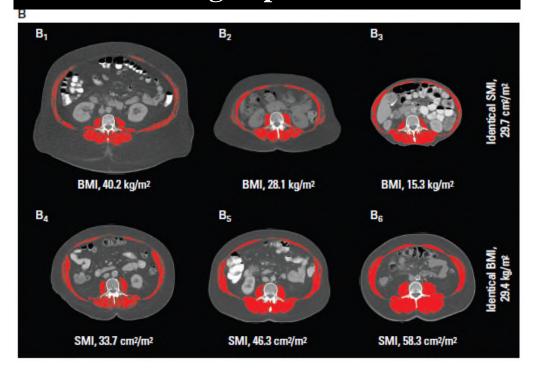
↑ energy expenditure

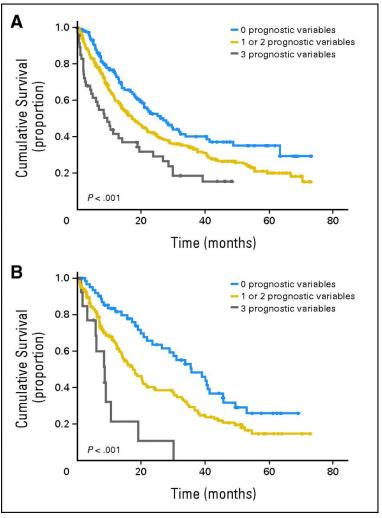
Anorexia, Muscle proteolysis, Asthenia (weakness), Hypoalbuminemia, Emaciation, Immune system impairment, Metabolic dysfunction, Autonomic failure

Failure of anti-cancer treatment

Increased treatment toxicity

Delayed treatment initiation


Early treatment termination


Shorter survival

Psychosocial distress

Muscle wasting shorten survival

High weight loss, muscle depletion, and low muscle attenuation on CT were independent prognostic factor of survival in lung & pancreatic cancer.

Martin L et al. JCO 2013;31:1539-1547

Contents

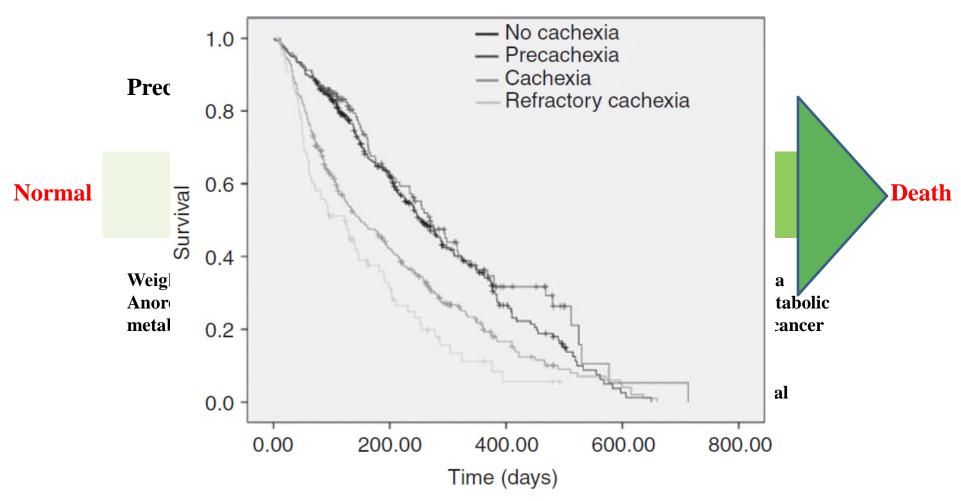
- Definition of Cancer Cachexia
- Clinical Implications of Cancer Cachexia
- Diagnosis of Cancer Cachexia
- Pathogenesis of Cancer Cachexia
- Current Therapies of Cancer Cachexia
- CT imaging for Nutritional Assessment in Pancreatic Cancer

Diagnostic criteria by international panel of experts

Unintentional weight loss (≥5%) within 6 months

or

BMI <20 and any degree of weight loss >2%

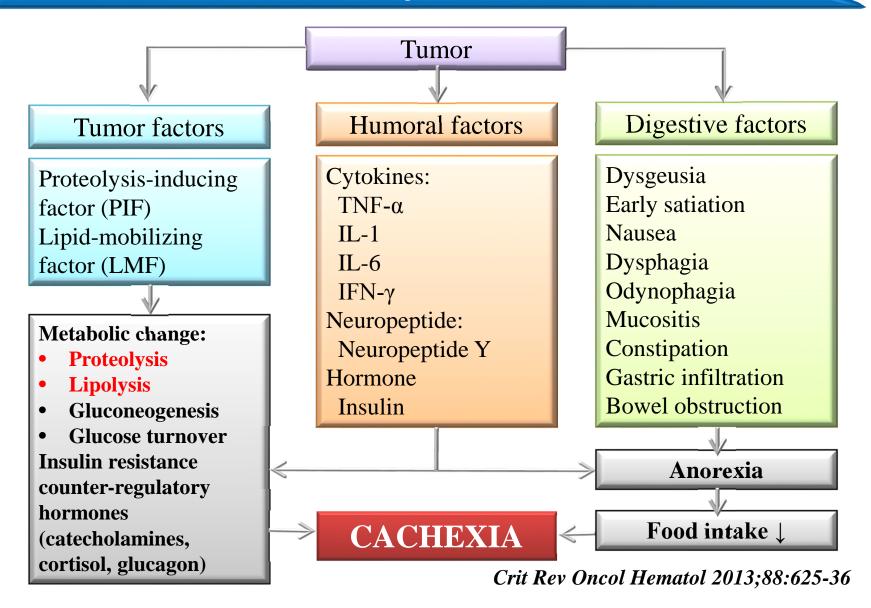

or

Appendicular skeletal muscle index consistent with sarcopenia (males <7.26 kg/m 2 ; females <5.45 kg/m 2)* and any degree of weight loss >2%

^{*} Appendicular skeletal muscle index determined by dual energy x-ray absorptiometry

Clinical Implications of Cancer Cachexia

Stage of Cancer Cachexia

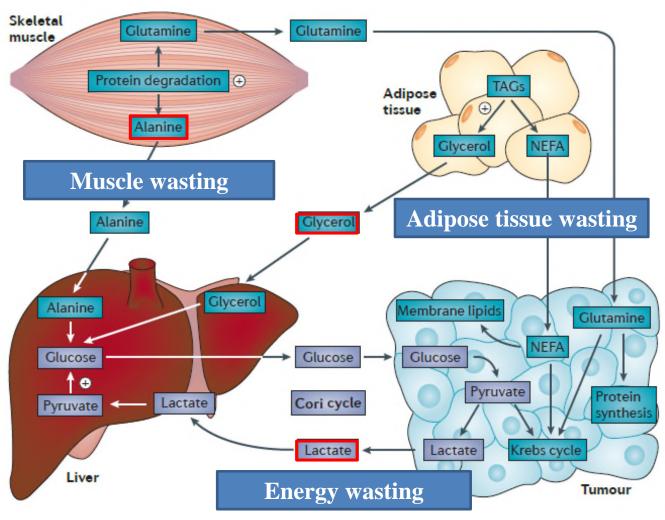


Kenneth Fearon, et al. Lancet Oncol 2011; 12: 489–95 Ann Oncol. 2014;25:1635-42

Contents

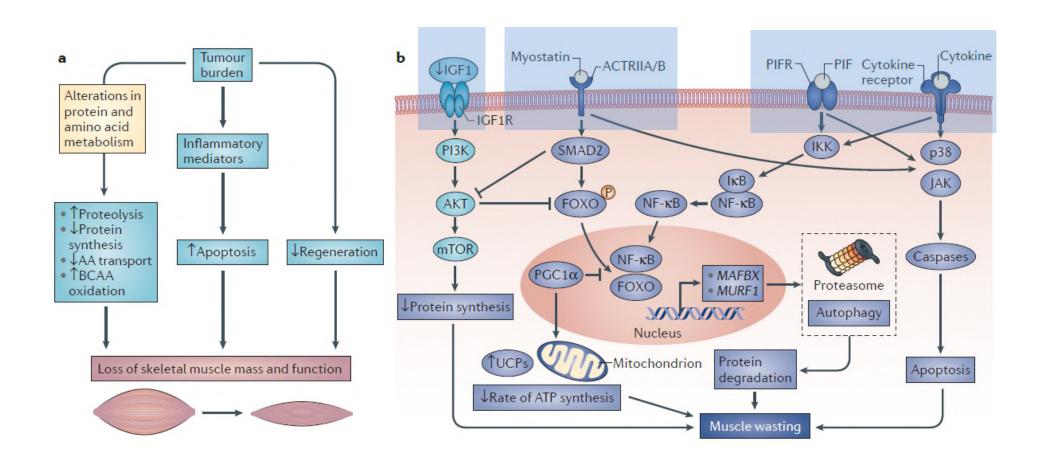
- Definition of Cancer Cachexia
- Clinical Implications of Cancer Cachexia
- Diagnosis of Cancer Cachexia
- Pathogenesis of Cancer Cachexia
- Current Therapies of Cancer Cachexia
- CT imaging for Nutritional Assessment in Pancreatic Cancer

Multi-factorial syndrome

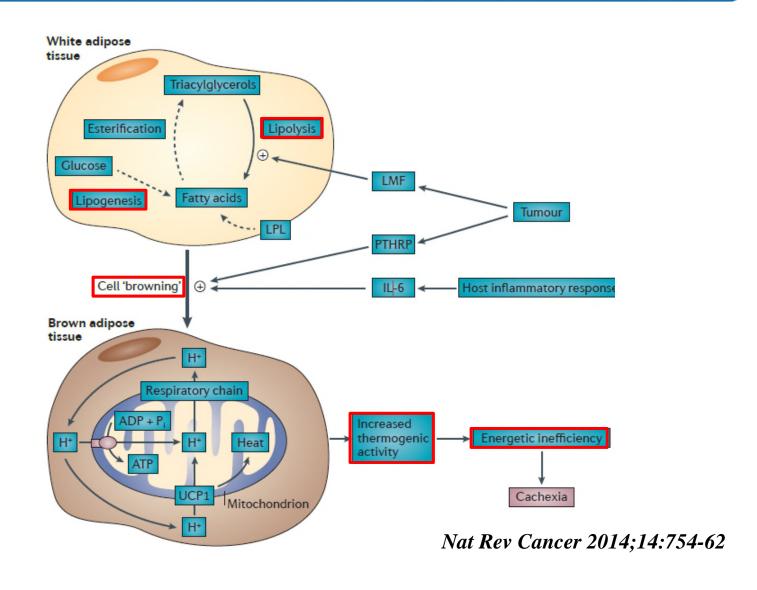

Understanding the molecular basis

- Energy wasting syndrome
- Muscle wasting and atrophy
- Adipose tissue wasting
- Tumor-driven inflammation
- Multi-organ syndrome

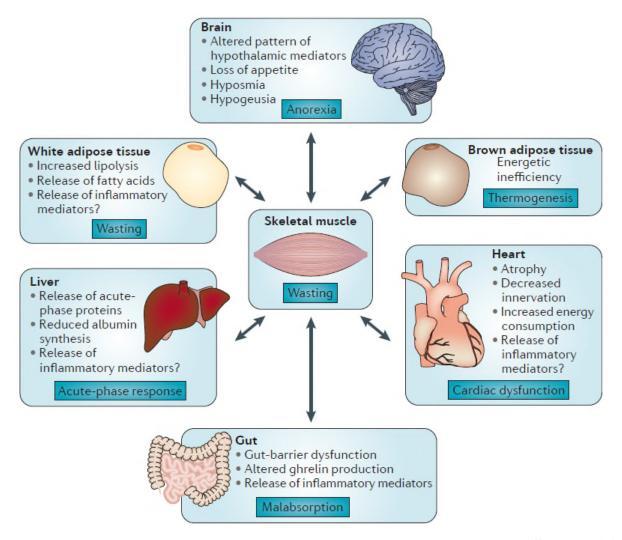
Pathogenesis of Cancer Cachexia


Metabolic alterations associated with tumor burden

Nat Rev Cancer 2014;14:754-62


Pathogenesis of Cancer Cachexia

Skeletal muscle wasting during cachexia



Pathogenesis of Cancer Cachexia

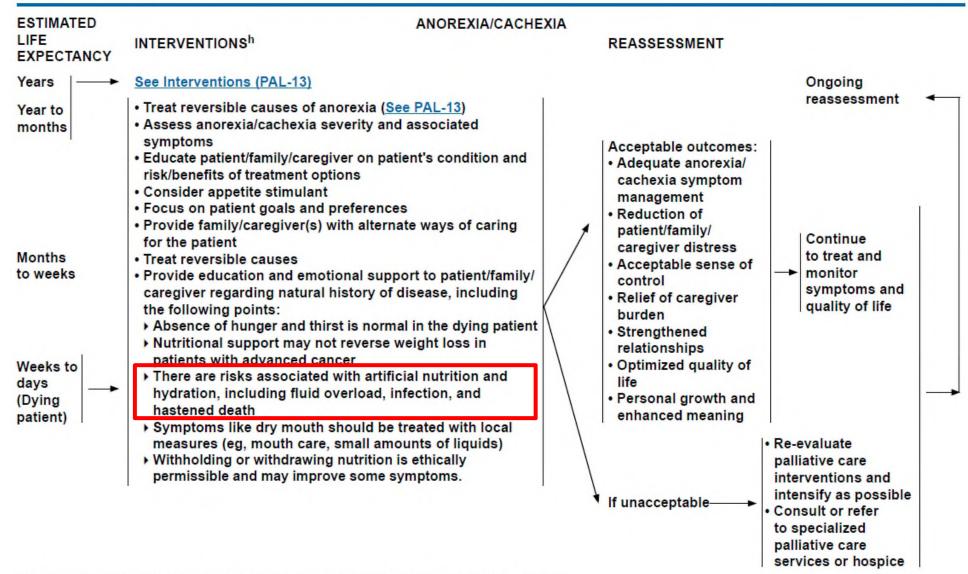
Browning of white adipose tissue in cachexia

Cachexia as multi-organ syndrome

Contents

- Definition of Cancer Cachexia
- Clinical Implications of Cancer Cachexia
- Diagnosis of Cancer Cachexia
- Pathogenesis of Cancer Cachexia
- Current Therapies of Cancer Cachexia
- CT imaging for Nutritional Assessment in Pancreatic Cancer

Strategies for intervention in cachexia

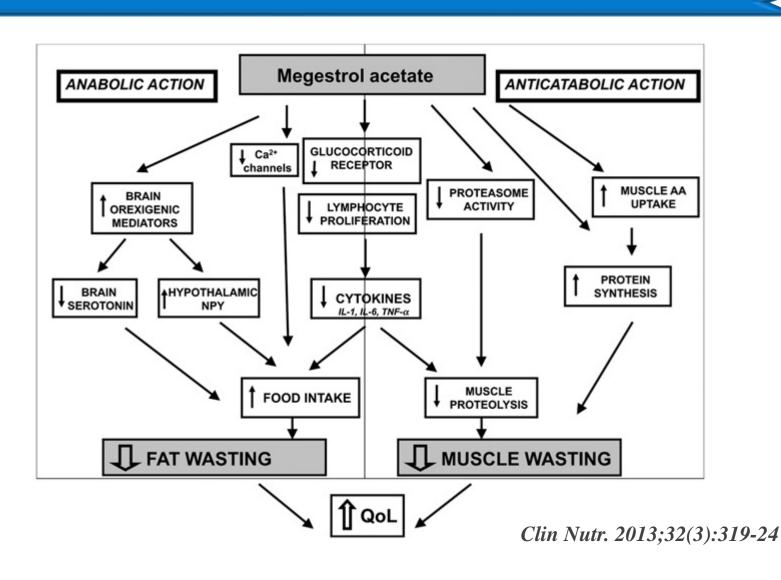

- Influencing the **primary cause**, such as cancer
- Alleviating **aggravating factors**

Comprehensive management

- Providing appropriate **nutritional support**
- Considering **pharmacological systemic treatment**
- Delivering compassionate **counseling** and support.

NCCN Guidelines Version 1.2018 Palliative Care

NCCN Guidelines Index Table Of Contents Discussion

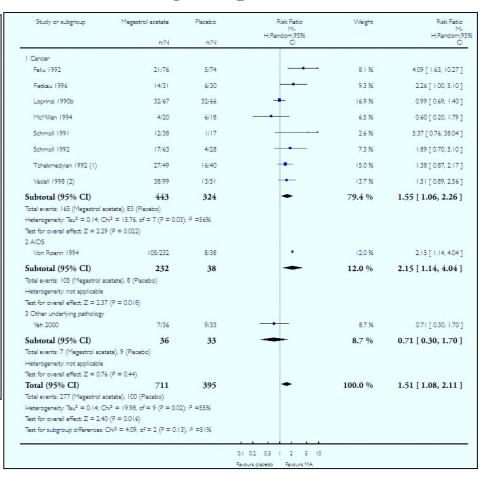

hSee Drug Appendix (PAL-A) for specific recommendations for medical management of symptoms.

NCCN Guidelines Version 1.2018 Palliative Care

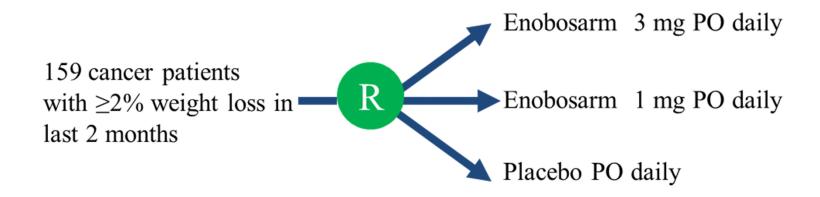
PALLIATIVE CARE DRUG APPENDIX

Condition	Recommended Agents and Dosage by Estimated Life Expectancy and Symptom Etiology	
Dyspnea (<u>PAL-11</u>)	Life Expectancy: Years; Year to Months; and Months to Weeks • General: Morphine, 2.5–10 mg PO q2h PRN or 1–3 mg IV q2h PRN for opioid naïve, increase dose by 25% for non-opioid naïve • For acute progressive dyspnea, or for patients who are not opioid naïve, more aggressive titration may be required • Anxiety: Lorazepam, 0.25–1 mg PO q4h PRN for benzodiazepine naïve	
Dyspnea (PAL-12)	Life Expectancy: Weeks to Days (dying patient) • General: Morphine, 2.5–10 mg PO q2h PRN or 1–3 mg IV q2h PRN if opioid naïve, increase dose by 25% for non-opioid naïve • For acute progressive dyspnea, or for patients who are not opioid naïve, more aggressive titration may be required • Anxiety: Lorazepam, 0.25–1 mg PO q4h PRN if benzodiazepine naïve • Fluid overload: Furosemide	
Secretions (PAL-12)	• Excessive secretions: Scopolamine, 0.4 mg SC q4h PRN/1.5 mg patches, 1–3 patches q 3 OR atropine, 1% ophthalmic solution 1–2 drops SL q4h PRN OR glycopyrrolate, 0.2–0.4 mg IV or SC q4h PRN	
Anorexia/ Cachexia (PAL-13)	Life Expectancy: Years; Year to Months • Depression/anorexia: Mirtazapine, 7.5–30 mg QHS • Gastroparesis (early satiety): Metoclopramide 5–10 mg PO QID 30 min before meals and at bedtime • Low/no appetite: Megestrol acetate, 400–800 mg/d	
Anorexia/ Cachexia (<u>PAL-14</u>)	Life Expectancy: Months to Weeks; Weeks to Days (dying patient) • Offer education to patient • Low/no appetite: Megestrol acetate, 400–800 mg/d OR olanzapine, 5 mg/d OR dexamethasone, 4–8 mg/d OR consider cannabinoid • Depression: Mirtazapine, 7.5–30 mg QHS	

Megestrol acetate

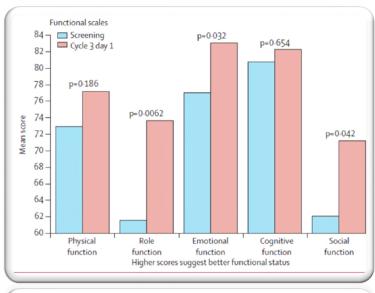


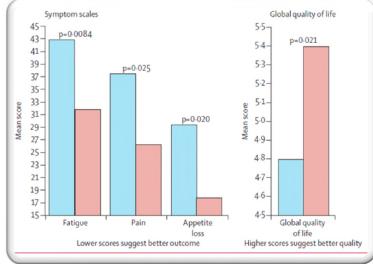
Megestrol acetate

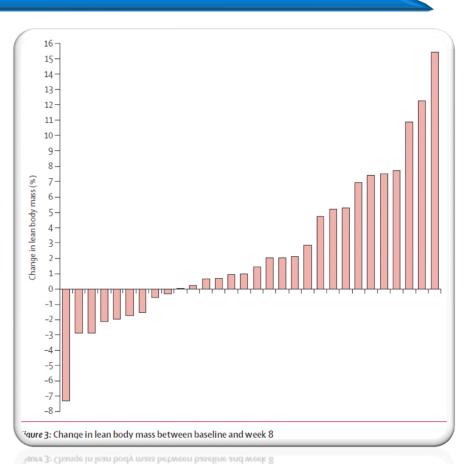

Appetite improvement

Study or subgroup Megestrol acetate Placebo Risk Ratio Weight Risk Ratio H,Random,95% H,Random,95% I Cancer Feliu 1997 38/76 10/74 716% 3.70 [1.99, 6.87] Loprinzi 1990b 24/67 16/66 24.3 % 1.48 [0.87, 2.52] Schmoll 1991 14/38 1/17 4.5 % 6.26 [0.89, 43.87] Schmoll 1992 37/63 6/28 18.3 % 2.74 [1.31, 5.74] Subtotal (95% CI) 244 185 68.6 % 2.57 [1.48, 4.49] Total events: 113 (Megestrol acetate), 33 (Placebo) Heterogeneity: Tau2 = 0.16; Chi2 = 6.32, df = 3 (P = 0.10); I2 = 53% Test for overall effect: Z = 3.33 (P = 0.00087) 31.4% Von Roenn 1994 181/232 19/38 1.56 [1.13, 2.16] Subtotal (95% CI) 232 38 1.56 [1.13, 2.16] 31.4 % Total events: 181 (Megestrol acetate), 19 (Placebo) Heterogeneity: not applicable Test for overall effect: Z = 2.68 (P = 0.0073) 3 Other underlying pathology Subtotal (95% CI) Not estimable Total events: 0 (Megestrol acetate), 0 (Placebo) Heterogeneity: not applicable Test for overall effect: not applicable Total (95% CI) 223 100.0 % 2.19 [1.41, 3.40] Total events: 294 (Megestrol acetate), 52 (Placebo) Heterogeneity: Tau2 = 0.13; Chi2 = 9.77, df = 4 (P = 0.04); I2 = 59% Test for overall effect: Z = 3.50 (P = 0.00047) Test for subgroup differences: $Chi^2 = 2.32$, df = 1 (P = 0.13), $I^2 = 57\%$ 0.1 0.2 0.5 1 2 5 10 Favours placeho Favours MA

Weight improvement


Enobosarm (selective androgen receptor modulators, SARMs)




Change in total lean body mass at day 113 or end of study compared with baseline

	Placebo	Enobosarm 1 mg	Enobosarm 3 mg
N	34	32	34
Mean (SD), kg	0.1 (2.7)	1.5 (2.7)	1.3 (3.5)
Median (range), kg	0.02 (-5.8 to 6.7)	1·5 (-2·1 to 12·6)	1·0 (-4·8 to 11·5)
p value*	0.88	0.0012	0.046

MABp1 (Anti-interleukin 1α Monoclonal Antibody)

Lancet Oncol. 2014 May; 15(6):656-66

Anamorelin (ghrelin mimetic)

• Analysis of change in lean body mass (kg) from baseline over 12 weeks by subgroup

	Number of patients			
ROM ANA 1	Placebo	Anamorelin		p value
Study population	158	316	⊢	<0.0001
Sex				
Male	119	242	⊢	< 0.0001
Female	39	74	 	0.62
Age				
≤65 years	104	211	<u> </u>	< 0.0001
>65 years	54	105		0.093
Weight loss				
s10%	96	190	<u> </u>	0.0006
>10%	62	126		0.0058
Body-mass index				
≤18-5 kg/m²	15	30	- I	0.060
>18-5 kg/m²	143	286	<u> </u>	<0.0001
Chemotherapy or radiation therapy				
No chemotherapy or radiation therapy	94	191	├	< 0.0001
With chemotherapy or radiation therapy	64	125	-	0.054
ECOG				
0-1	133	252	├	<0.0001
2	25	64		0.12

Pharmacologic treatments

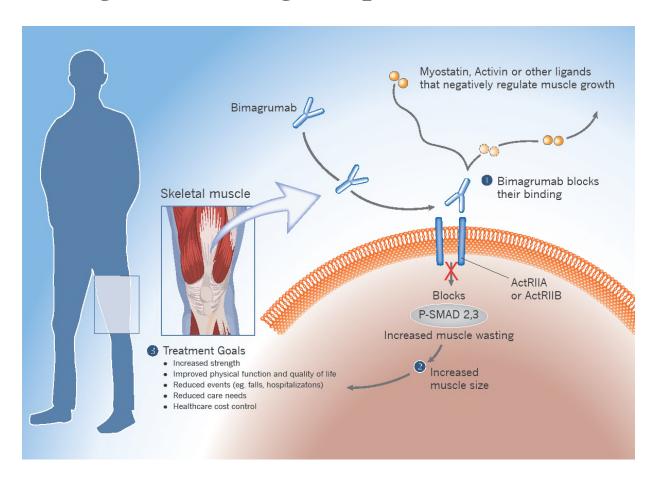
Corticosteroids are beneficial in treating anorexia in palliative care patients with malignancies; There is insufficient evidence to recommend any particular corticosteroid drug over another, or to recommend a dosing regimen.

Use of corticosteroids for anorexia in palliative medicine: a systematic review. J Palliat Med. 2014;17(4):482-5

Olanzapine (atypical antipsychotic) had only a modest effect in altering the trajectory of weight loss.

Olanzapine for cachexia in patients with advanced cancer :an exploratory study of effects on weight and metabolic cytokines.

Support Care Cancer. 2015 Sep;23(9):2649-54


After 4 weeks of **mirtazapine** (a tetracyclic antidepressant), 24% of patients gained 1 kg or more, 24% and 6% improved appetite and health-related quality of life.

Phase II trial of mirtazapine for cancer-related cachexia and anorexia.

Am J Hosp Palliat Care. 2010;27(2):106-10

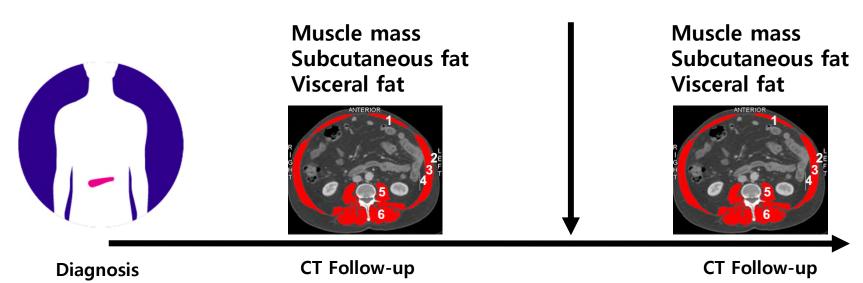
Human antibody to ActRIIB

Muscle Wasting is a new target of pharmaceutical development!

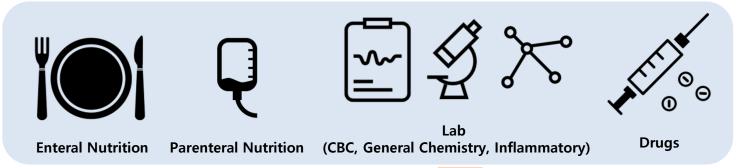
Contents

- Definition of Cancer Cachexia
- Clinical Implications of Cancer Cachexia
- Diagnosis of Cancer Cachexia
- Pathogenesis of Cancer Cachexia
- Current Therapies of Cancer Cachexia
- CT imaging for Nutritional Assessment in Pancreatic Cancer

Personalized Nutrition in Pancreatic Cancer Patients

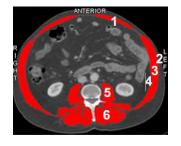

Subjects: Pancreatic Cancer Patients (N=413), diagnosed and deceased in SEVERANCE

Aim: To identify the Factors the differences in muscle mass, subcutaneous and visceral fat between two different CT evaluation

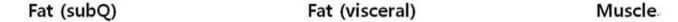

Nutritional status or supplements ?

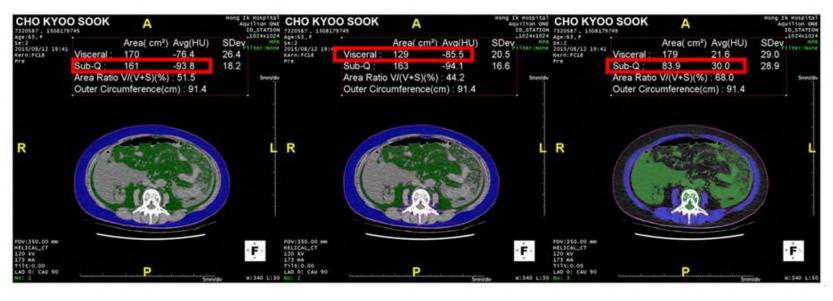
Medications ?

Lab (CBC, Chemistry) ?



Methods: Potential Factors


Antidepressant
Antiemetics
Antilipidemics
Anti-inflammatory
Hormone
DM medication
HTN medication
Nutrition (Pancreatic Enzyme, L-carnitine)
Analgesics
Chemotherpeutic agents



Visceral Adipose Tissue Area Subcutaneous Adipose Tissue Areas Smooth Muscle Area Skeletal Muscle Area

Index: FFM/FM/Muscle Index/Sarcopenia

Methods: Lean tissue imaging (CT L3 Level)

-190 ~ -30 HU

-150 ~ -50 HU

Low, fatty -29 ~ 29 HU Normal 30 ~ 150 HU

Aquarius iNtuition ver.4.4.12.185.3539 TeraRecon, Foster City, CA, USA

Visceral Adipose Tissue Area Subcutaneous Adipose Tissue Areas Skeletal Muscle Area **FFM (kg)** =0.3 x (skeletal muscle cross-sectional area at L3 (cm2)) **FM (kg)** =0.042 x ((visceral fat area at L3 (cm2)) +(subcutaneous fat area at L3 (cm2)))

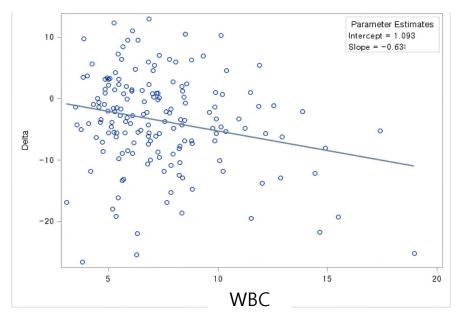
 $VF\% = VFA/TFA \times 100$

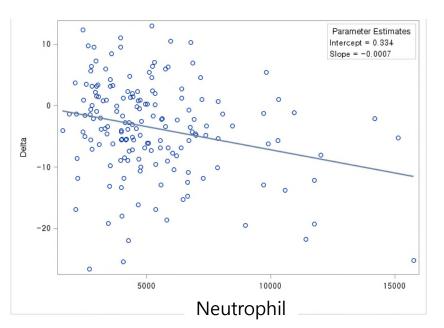
Skeletal Muscle Index

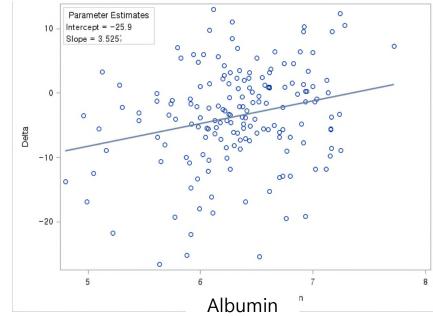
= (skeletal muscle cross-sectional area at L3 (cm2))/(Height)^2(m^2)

Results: Baseline Characteristics

	n = 413		
Age, mean ± SD	66 ± 10.2		
Gender male, N	239 (57.9)		
Body mass index (kg/m^2), median (IQR)	22.3 (20.3-24.3)		
<20.0 (underweight), N(%)	41 (9.9)		
20.0-24.9 (normal weight), N(%)	288 (69.7)		
>25.0 (overweight, obese), N(%)	82 (19.9)		
Alcohol consumption, N (%)			
Never / Former / Current	219(53) / 110 (26.6) / 74 (17.9)		
> 8 glass / week	104		
Smoking status, N(%)			
Never / Former / Current	245 (59.3) / 110 (26.6) / 46 (11.1)		
Comorbidity, N (%)			
Diabetes (yes/no)	151 (36.6)		
Hypertension (yes/no)	201 (48.7)		
Resectability			
Resectable	53 (12.8)		
Borderline resectable	46 (11.1)		
Locally advanced	57 (13.8)		
Advanced	256 (62.3)		

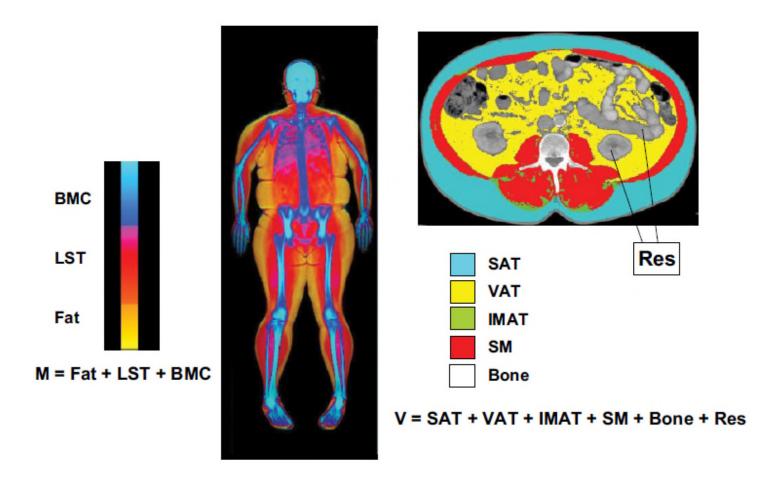

Results: Baseline Characteristics


	n = 413	
Body Composition Variable		
SMI (cm^2/m^2), median(IQR)	40.9 (35.7-46.7)	
MA(HU), median (IQR)	40.6 (34.6-46.1)	
VF (%), median (IQR)	44 (35-55.1)	
FFM (cm^2), median (IQR)	38.2 (33-44.5)	
FM (cm^2), median (IQR)	17.3 (14.8-20.1)	

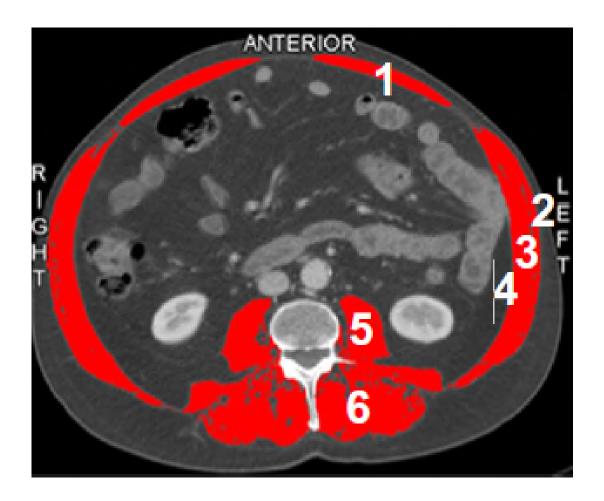

Results: Skeletal Muscle Attenuation

Variable	Beta	S.E	P-value
ECOG 1	6.06187	2.45367	0.0145
ECOG 3	-12.11517	4.36487	0.0061
Hemoglobin	1.40586	0.42894	0.0013
WBC	-0.63782	0.20876	0.0026
Neutrophil	-0.00075	0.00022	0.0010
NLR	-0.46910	0.15319	0.0026
Albumin	3.52572	1.07867	0.0013
CRP	-0.04846	0.01928	0.0131

Results: Skeletal Muscle Attenuation



Summery & Conclusions


- ◆ Cancer cachexia occurs most often in gastrointestinal cancer compared to cancers in other sites. In pancreatic cancer and gastric cancer, cachexia occurs in over 80% of cases.
- **♦** The pathophysiology of cachexia includes complex metabolic mechanisms directly linked to the tumor-host interaction.
- ◆ Current diagnosis of cancer cachexia comprise weight loss, body mass index (BMI) and levels of muscle mass (sarcopenia).
- ◆ Cancer cachexia leads to shortened survival, early & frequent treatment toxicities, and poor functional status.
- ◆ An expanded multimodality approach including specific anti-cachexia pharmacological interventions, nutritional counseling, exercise is may be more effective than the use of any of these treatment alone.

Methods: Lean tissue imaging

Figure 2. Selected body composition components measured by dual-energy x-ray absorptiometry (DXA; left) and magnetic resonance imaging (MRI; right). Body mass (M) and volume (V) represent the sum of these components for DXA and MRI, respectively. BMC, bone mineral content; IMAT, intermuscular adipose tissue; LST, lean soft tissue; Res, residual mass (organs and tissues remaining after subtracting skeletal muscle, bone, and adipose tissue volumes); SAT, subcutaneous adipose tissue; SM, skeletal muscle; VAT, visceral adipose tissue.

Methods: Lean tissue imaging

1 rectus abdominis, 2 external oblique, 3 internal oblique, 4 transverse abdominal, 5 psoas, 6 paraspinal