EFFECT OF ESTRADIOL IN AN AOM/DSS-TREATED MOUSE MODEL OF COLORECTAL CANCER: IMPLICATION FOR SEX DIFFERENCE IN COLORECTAL CANCER DEVELOPMENT

Nayoung Kim, MD, PhD

Department of Internal Medicine,

Seoul National University College of Medicine

Seoul National University Bundang Hospital

South Korea

Trends of Incidence of Colorectal cancer in the World

Trends of Incidence of Colorectal cancer in South Korea

Male

Female

Sex disparities in CRC prevalence by age in Korea

Proximal and distal colon tumors depending on sex

Feature	Proximal (Right)	Distal (Left)
Age at diagnosis	Older	Younger
Gender	More females	More males
Mucinous tumours	Frequent	Infrequent
Familial cancer syndrome	HNPCC	FAP
benefit Ploidv	Good Mostly diploid	Marginal or none Mostly aneuploid
Loss of	, I	, I
heterozygosity	Infrequent	Frequent
TP53 mutation	20-30%	50-60%
MSI+	25%	2-3%
CIMP+	25-40%	3-10%

Effects of sex hormones in CRC: Epidemiologic study

JAMA 2002;288:321-33.

AOM/DSS colorectal cancer mice model

Five-week-old ICR mice

- A major chemically induced CRC model
- Synergic actions of tumor-inducing and tumor-promoting effects of <u>AOM and DSS</u>
- Follows the <u>aberrant crypt foci-adenoma-carcinoma</u> sequences and shows similar molecular features as a human CRC

HYPOTHESIS 1

Estrogen supply in <u>male</u> AOM/DSS mice model

would reduce colorectal tumorigenesis by modulating

inflammation

HYPOTHESIS 2

Ovarectomy in <u>female</u> AOM/DSS mice model would increase colorectal tumorigenesis which will be reduced by supplementation of estrogen.

EFFECT OF ESTRADIOL IN AN AOM/DSS-TREATED MOUSE MODEL OF COLORECTAL CANCER: IMPLICATION FOR SEX DIFFERENCE IN CRC DEVELOPMENT

Background

Many epidemiologic data suggest protective role of estrogen in CRCdevelopment.Caiazza F, et al. Front Oncol 2015;5:19

There was <u>relationship between estrogen and Nrf2</u> (nuclear factor erythroid 2-related factor 2, a transcriptional factor) in breast cell line. Exp Cell Res. 2014;328:351-60

<u>PKCo</u> (protein kinase C **o**) activates <u>**Nrf2**</u> in the G α_{13} signaling pathway.

Li T, et al. Am J Physiol Heart and Circ Physiol. 2014;306:H1105-15

Dual role of <u>NRF2</u> activation depending on tumor stage

Role of NF-kB in development of cancer

<u>Cross-talk between Nrf2 and NF-κB</u> downregulate pro-inflammatory

signaling by suppressing NF-kB directly.

Li W, et al. Biochem Pharmacol. 2008;76:1485-9

IL-1 β , caspase-1 and Inflammasome

<u>**IL-1**</u> β is expressed as an inactive pro-IL-1 β moiety, and <u>**cleavage by caspase-1**</u> activates IL-1 β .

recruitment domain— CARD)

Nature Immunol 2012;13:343-51

Inflammasome, Nrf2, estrogen and CRC

Estrogen activates the inflammasome, and the relationship of Nrf2 with the activating mechanism of the NLRP3 inflammasome was reported. Zhao C, et al. J Biol Chem. 2014;289:17020-9

<u>Caspase-1</u> activated by NLRP3 inflammasome <u>triggers pyroptosis</u> which

might elicit an anti-cancer immune reaction.

Miao EA, et al. Immunol Rev. 2011;243:206-14 Kepp O, et al. Eur J Immunol. 2010;40:627-30

However, NLR gene such as <u>NLRP3 could be a biomarker of CRC and cancer</u> progression. Liu R, et al. Oncotarget, 2015:6,;33456

Thus, a <u>double-edge sword behavior of the NLRP3 inflammasome</u>, with anti- and pro-cancer activities is possible. Kolb R, et al. Protein Cell. 2014;5:12-20

Aim

To investigate the effects of estrogens in male mice on

inflammation and tumorigenesis by evaluation of

Nrf2, NF-kB, and inflammasome pathway

J Cancer Res Treat under review

Animal experimental design

5-week-old at the point of AOM injection 10 0 1 2 16 wks 4 Group no. Sacrifice Group 1 (M-con) Group 2 (M-AOM/DSS) DSS in drinking water AOM Group 3 (M-AOM/DSS+estr) DSS + Daily estradiol i.p. injection AOM Group 4 (F-con) Group 5 (F-AOM/DSS) DSS in drinking water AOM Standard diet

Experimental protocols (I)

Disease Activity Index (DAI)

- Body weight loss
- Stool consistency
- Hematochezia

DAI scoring

Score	Weight loss	Stool consistency	Hematochezia
0	None	Normal	Absence
1	0-10%		
2	10-15%	Loose	Blood tinged
3	15-20%		
4	>20%	Diarrhea	Presence

Gross measurement

Colon length (2, 10,16 weeks)

Counting tumor lesions (10,16 weeks)

<u>Histopathology</u>

- Colonic epithelial damage (2 week)
- Depth of infiltration with inflammatory cells (2 weeks)
- Scoring of microscopic adenoma/cancer (10,16 weeks)

Experimental protocols (II)

 Measurement of inflammatory cytokines such as MPO, COX2 and IL-6 (ELISA) NFkB (Western blot)

. Underlying cancer mechanism

Anti-oxidation: Nrf2, Heme oxygenase-1 (HO-1), GCLC, GCLM, NQO1 **Inflammasome :** NLRP3, IL1β, caspase 3 (Western blot, RT PCR)

Results

AOM/DSS-induced <u>tumorigenesis</u> are reduced by estradiol (Week 10 and 16)

Cancer with mucosa invasion

■ Cancer with submucosa invasion

Effect of estradiol during colitis and cancer progression in terms of $NF-\kappa B$

Effect of estradiol during colitis and cancer progression in terms of <u>Nrf2</u>

Difference between cancer and non-cancer group in F-AOM/DSS group

Summary of 1st Experiment

The effect of estradiol administration into M-AOM/DSS

	Week 2 (inflammation)	Week 10 and 16 (tumorigenesis)
DAI and histologic severity of colitis	decrease	
Tumor incidence		decrease
NF-kB	decrease	decrease
Nrf2	increase	decrease
Inflammasome	increase	decrease

Inflammasome in F-AOM/DSS depending on cancer

	Cancer	Non-cancer
NLRP3, caspase 1	high	low

Conclusion of 1st Experiment

The data indicate that estrogen inhibits the initiation of colorectal cancer by up-regulating Nrf2 or inflammasome-related pathways.

However, on premalignat or malignant stage (week 10 and 16)

estrogen prevents CRC by inhibition of Nrf2 and NLRP3 inflammasome.

These data suggest dual role of Nrf2 / inflammasome in the tumorigenesis of CRC.

Proposed regulatory mechanism of estrogen in colitis-associated CRC

Week 2

Week 10 or 16

-----→ Multistep activation → Stimulates → Interaction

EFFECT OF OVARECTOMY IN AN AOM/DSS-TREATED MOUSE MODEL OF COLORECTAL CANCER

Aim of 2nd Experiment

To investigate whether ovarectomy in <u>female</u> AOM/DSS mice model increases colorectal tumorigenesis, and whether tumorigenesis is reduced by supplementation of estrogen after ovarectomy.

Ovarectomy and AOM/DSS and estradiol injection

17β-estradiol ELISA (blood) in female mice on week 2

Colon length

p-value < 0.05, * (compare with F_Con.), # (compare with OVX_Con.)

Ovarectomy did not increase tumor but E2 prevented tumor in AOM/DSS-induced colitis (Week 10 + 16)

Summary of 2nd experiment

Ovarectomy did not aggravate inflammation in female AOM/DSS model.

Ovarectomy did not increase tumor but E2 prevented tumor in AOM/DSS-induced colitis (Week 10 + 16).

Take home message

Estrogen treatment prevented CRC in male mice.

- Increase of Nrf2 and inflammasome by estradiol in the inflammation stage contributes to the prevention of CRC in male mice. However, in the tumorigensis period the role could be opposite.
- Ovarectomy in female mice did not affect inflammation or tumorigenesis, so far.
- Investigation regarding the effect of orchiectomy is necessary in the future.

Thank you for your attention