IIK2018

Recent Updates in Management for Locally Advanced Pancreatic Cancer (LAPC) -Medical Oncology Perspective-

Sang Myung Woo

¹Center for Liver Cancer, ²Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Korea

No conflicts of interest or financial ties to disclose

Contents

- 1. The role of systemic chemotherapy in the management of LAPC
- 2. Biomarker development to identify patients with rapidly progressive disease
 - SMAD4 or other candidates
- 3. Optimal chemotherapy regimen for LAPC

Contents

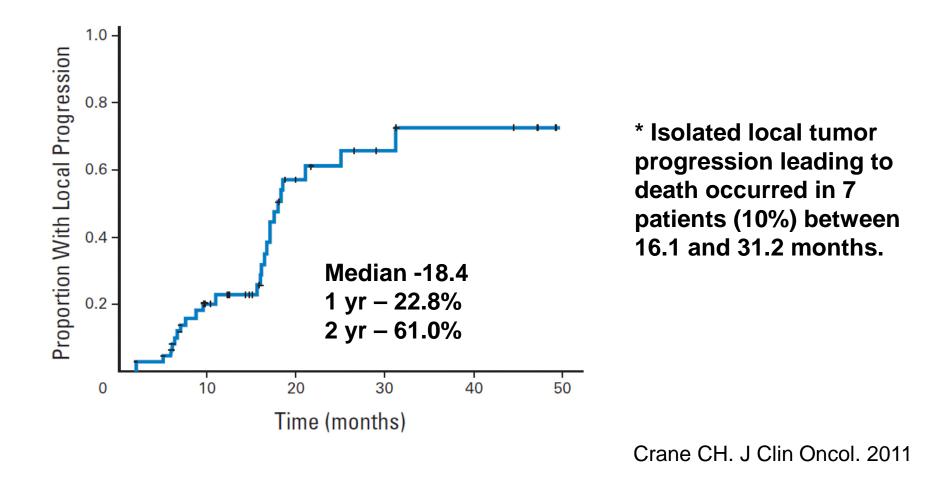
- 1. The role of systemic chemotherapy in the management of LAPC
- 2. Biomarker development to identify patients with rapidly progressive disease
 - SMAD4 or other candidates
- 3. Optimal chemotherapy regimen for LAPC

Pancreatic Cancer by Stage

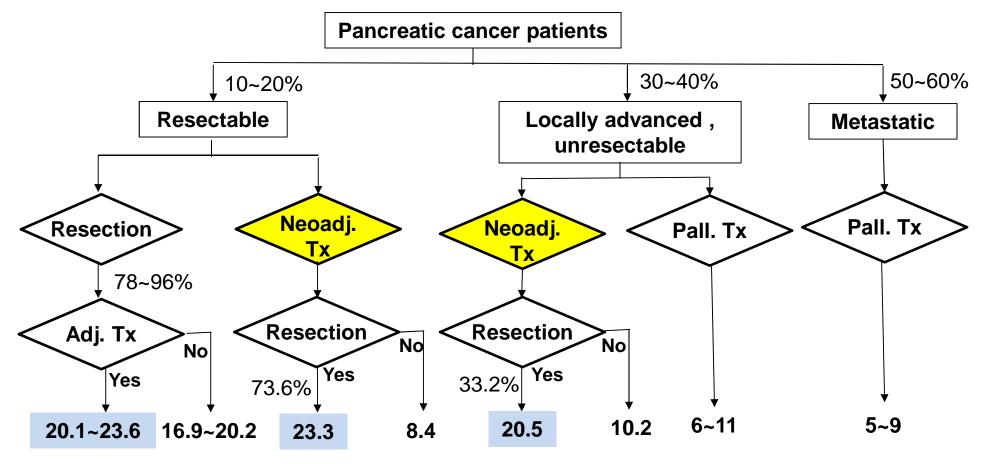
- SEER summary stage (2009-2013) -

Stage Classifie	cation	% at Diagnosis	5-Yr Survival, %
Localized		10.6	29.7
Locally advanced/ unresectable		31.6	13.6
Metastatic		45.6	1.7
Unknown		12.2	10.4

Ministry of Health & Welfare, Korea Central Cancer Registry, 2015


Metastasis - Major Prognostic Factor of LAPC-

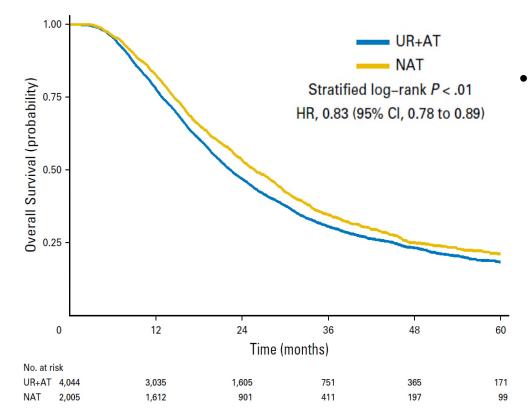
Variables included in final model	P-value	Hazard ratio	Lower 95% CI	Upper 95% CI
Distant mets: yes (n = 144, 59%) versus no (n = 100)	<0.0001	3.56	2.57	4.93
Peritoneal (n = 61) versus no mets (n = 100)	<0.0001	4.30	2.97	6.24
Mixed mets (n = 28) versus no mets (n = 100)	<0.0001	3.64	2.00	6.63
ECOG: 2/3 (n = 98) versus 0/1 (n = 146)	0.0002	1.69	1.28	2.23
CA19-9: >1000 (n = 73) versus ≤1000 (n = 150)	0.0018	1.59	1.19	2.14
Sex: female (n = 108) versus male (n = 136)	0.0015	1.57	1.19	2.08


- 244 unresectable LAPC who initiated first-line palliative chemotherapy between 2001 and 2011
- 5 provincial British Columbia Cancer Agency clinics
- The provincial pharmacy database was used to identify patients who had a pathological confirmation of PDAC and received at least once cycle of palliative-intent chemotherapy
- OS for the entire cohort was 11.7 months (95% CI, 10.6–12.8).

Local Tumor Progression : Uncommon Before 1 Year

- Phase II Trial of Cetuximab, Gemcitabine, and Oxaliplatin Followed by Chemoradiation With Cetuximab for LAPC (n=69)-

Neoadjuvant Therapy: No Advantage over Resection Followed by Adjuvant Therapy?



Median survival (months)

Gillen S. PLoS Med 2010

Neoadjuvant Therapy Followed by Resection Versus Upfront Resection for Resectable Pancreatic Cancer: A Propensity Score Matched Analysis

 Adult patients with resected, clinical stage I or II adenocarcinoma of the head of the pancreas were identified in the National Cancer Database from 2006 to 2012. (n=15,237)

Kaplan-Meier curve for overall survival between patients of the upfront resection (UR) group who received adjuvant therapy (UR+AT) and patients of the neoadjuvant therapy (NAT) group.

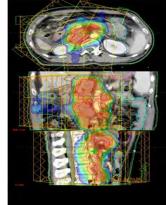
Mokdad AA. J Clin Oncol 2016

Oncological Benefits of Neoadjuvant Chemoradiation (CRT) With Gemcitabine Versus Upfront Surgery in Patients With Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial

Arm A	Arm B		GGGG	GG				-
Allocated to neoadjuvant CRT (n=30)	Allocated to surgery (n=28)	Arm 1 Arm 2	RT 45	G G C RT 45+9		G G	G G]
Received CRT (n=27) Completed CCRT (n=26)	Received surgery (n=23) Resection (n=18, 64%) - R0 n=6 (33.3%)	1.00 -	-treat analysis				ARM=: ARM=:	
Received surgery (n=24) Resection (n=17, 56%) - R0 n=14 (82.4%)	Received CRT (n=13)	0.75 - Aline Arobability						
RECIST criteria, n (%) Partial response, 6 (35.3) Stable disease, 10 (58.8) Progressive disease, 1 (5.9)		MS (mo) 21 5 (95% CI 0 P = 0.028			۳		1
Tumor regression, n (%) Complete response, 2 (11.8) Moderate response, 3 (17.6)		0 ARM=1 27 ARM=2 23	6 27 22	12 21 12	18 Time 16 7	24 12 6	30 5 2	36 4 1
Minimal response, 12 (70.6)				Ja	Numbers at risk	Ann Si	urg 20	18

Chemotherapy vs. chemoradiotherapy?

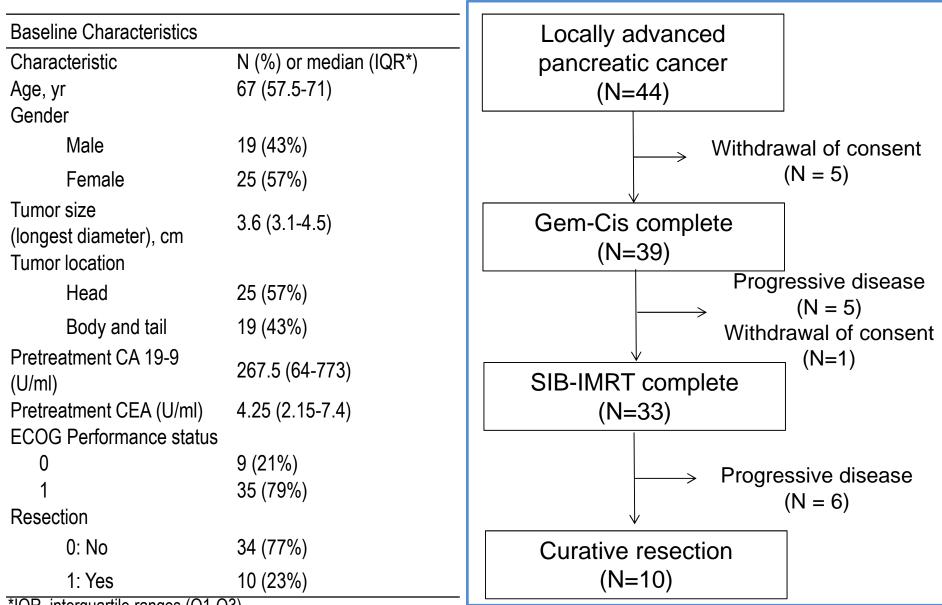
Treatment	Study type	Νο	Median surviv al (mo)	Ρ	Reference
Chemoradioth	nerapy vs chemo	otherapy alo	one		
5-FU and cisplatin + 60 Gy →Gem Gem	RCT	59 60	8.6 13.0	0.03	Chauffert et al. (2008)
Gem + 50.4 Gy Gem	RCT	34 37	<mark>11.1</mark> 9.2	0.044	Loehrer et al. (2011)
Chemoradiotherapy					
5-FU + 50.4–61.2 Gy Gem + 50.4–61.2 Gy	RCT	18 16	6.7 14.5	0.027	Li et al. (2003)
5-FU + 50.4 Gy Capecitabine + 50.4 Gy	Phase II	53 31	11.9 12.5	0.526	Kim et al. (2012) NCC, Korea


Induction Chemotherapy then CRT

Study	Study design and treatment	Results	Comment on the role of CRT			
LAP07 (Hammel P. JAMA 2016)	Phase III Gem ± erlotinib for 4 cycles (n=442) ↓ CRT with Cap or not (n = 269)	Overall survival Chemotherapy vs CRT :16.5 vs 15.2 months (HR, 1.03; 95% CI, 0.79- 1.34; P = .83)	 Decreased local progression (32%vs 46%, P = .03) no increase in grade 3 to 4 toxicity, except for nausea. 			
SCALOP (Mukherjee Lancet Oncol 2013)	Phase II GemCap for 4 cycles (n=74) ↓ CRT with Cap or Gem	Progression-free survival. Cap vs Gem : 12.0 vs 10.4 months (adjusted HR 0.60, 95% CI 0.32–1.12; p=0.11)	Gem vs Cap : G 3-4 haematological toxicity (18% vs none, p=0.008) non-haematological toxicity (26% vs 12%, P=0.12)			

A Phase II Study of Induction Chemotherapy with Gemcitabine and Cisplatin followed by Simultaneous Integrated Boost-Intensity Modulated Radiotherapy with Concurrent Gemcitabine for Locally Advanced Unresectable Pancreatic Cancer

Inclusion criteria (n=44)


- histologically or cytologically proven, ECOG PS 0-1, no evidence of metastatic disease,
- Criteria for local unresectability included at least one of the following: long segment occlusion of SMV/PV, more than 180-degree involvement of SMA or involvement of the hepatic artery or celiac trunk.

Before Ch	nem	oth	erap	y		ŀ	After	2IR-I	INIKI		
CBC, Liver function t guieded fine CA19-9 (PE	needle	enal fu biopsy	, CT, ΜΙ			Test CBC, LFT, CA 19-9, CT (CEA, if necessary)					
Blood sample (Blood sampling and torage)	↓					 Blood sample (Blood sampling a storage) 	nd ↓				
•	↓ D1	D8	D15	D22	3 weeks	•	nd ↓ D1	D8	D15	D22	D29
(Blood sampling and	•	D8 ♠	D15 ↑	D22	3 weeks	(Blood sampling a	D1	D8 ↑↑↑↑↑	-		D29 ≜ ↑

Woo SM. Cancer Res Treat. 2017

Results: Characteristics & Flow

*IQR, interquartile ranges (Q1-Q3)

Characteristics of Patients who Underwent Curative Resection

Patien t No.	Age (y)		Surgical procedure	Blood vessel ex cision	Pathology stage	Diff	Blood ves sel invasio	ic invasi	al invasi		•
							n	on	on		
8	57	Μ	Total pancreatectomy	PV	(y)pT1N1	MD	-	-	-	1/6	16.2
10	54	F	Distal pancreatectomy (Posterior RAMPS)		(y)pT3N0	NS	-	-	Present	0/8	18.8
11	60	F	Total pancreatectomy	Right HA, PV	(y)pT3N1	NS	-	Present	Present	1/13	17.6
12	76	F	PPPD	SMA	(y)pT3N0	NS	-	-	Present	0/17	39.5
13	45	М	Total pancreatectomy	PV, CHA	(y)pT3N0	MD	Present	Present	Present	0/27	15.1
19	68	F	Distal pancreatectomy	celiac axis	No residual tumor	-	-	-	-	0/10	41.9
20	71	М	Distal pancreatectomy (anterior RAMPS)	celiac axis	(y)pT3N0	MD	Present	Present	Present	0/20	23.6
30	56	М	Standard PD	SMA	(y)pT3N1	MD	-	Present	Present	2/21	12.9
32	69	М	Distal pancreatectomy	portal vein	(y)pT3N1	WD	Present	-	Present	7/14	33.4
44	70	М	Distal pancreatectomy (Anterior RAMPS)	celiac axis	(y)pT3N1	MD	Present	Present	Present	1/3	14.6

Ongoing Clinical Trials in Neoadjuvant Setting in Pancreatic Cancer (PC)

Treatment	Setting	Trial identification nu mber	Ph	Duration (weeks)
RT with gemcitabine	BRPC	NCT01458717	/	4-6
Gemcitabine	BRPC	NCT01458717	/	6
Gemcitabine/Oxaliplatin	Resectable PC	NCT01314027	III	8
Gemcitabine + erlotinib	Resectable PC	NCT00733746	II	5-8
Nab-paclitaxel + gemcitabine	Resectable PC	NCT02047513	III	8
Gemcitabine + capecitabine	Resectable PC	NCT01360593	II	8-10
FOLFIRINOX and gemcitabine during & foll owing RT	BRPC	NCT01661088	Ш	21
FOLFIRINOX	Resectable PC	NCT01677988	II	10
FOLFIRINOX and RT with capecitabine	BRPC	NCT01821612	I	10
Capecitabine, cisplatin, epirubicin, and gem citabine	Resectable PC	NCT01150630	11/111	12
Gemcitabine, capecitabine, and docetaxel (GTX) and with RT	BRPC	NCT01065870	11/111	12-20
Gem, 5-FU Oregovomab, Nelfinavir + RT	LAPC	NCT01959672	II	13-14

BRPC, borderline resectable PC; LAPC, locally advanced PC

Modified from "Bittoni A. Gastroenterol Res Pract. 2014"

Duration of Initial Chemotherapy?

- No RCT data
- Variable and dependent on patient tolerability and tumor response in practice
- Number of neoadjuvant cycles
 - Only independent predictor of survival (HR 0.49, 95%
 CI 0.34-0.71, p < 0.001) Dhir M. J Clin Oncol. 2018 (abstr 402)

American Society of Clinical Oncology Clinical Practice Guideline

- Initial systemic therapy with combination regimens is recommended for most patients with ECOG PS 0 or 1.
- There is no clear evidence to support one regimen over another.
- For some patients, chemoradiotherapy (CRT) or SBRT may be offered up front, or response or stable disease after 6 months of induction chemotherapy.

JOURNAL OF CLINICAL ONCOLOGY	ASCO SPECIAL ARTICLE
	Madified from "I Clip Orecel 2016 May"

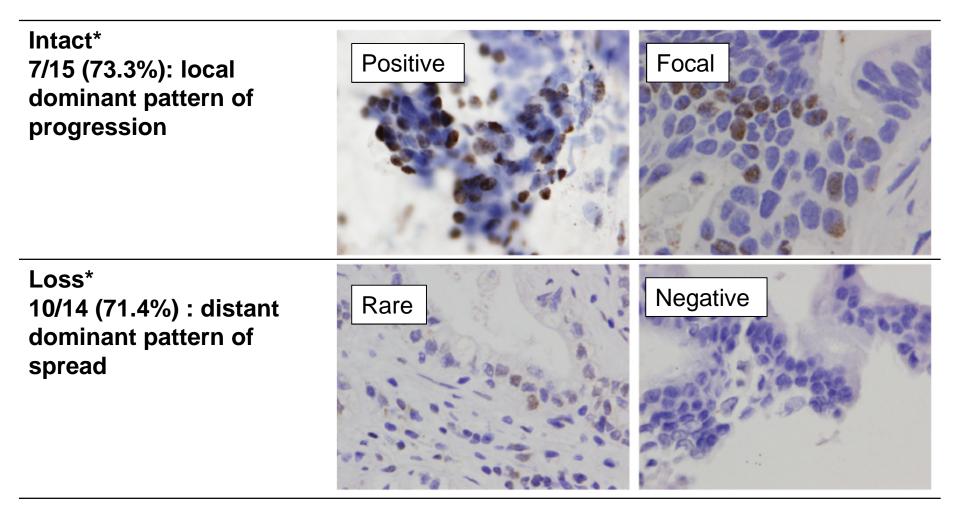
Modified from "J Clin Oncol 2016 May"

Contents

1. The role of systemic chemotherapy in the management of LAPC

- 2. Biomarker development to identify patients with rapidly progressive disease
 - SMAD4 or other candidates

3. Optimal chemotherapy regimen for LAPC

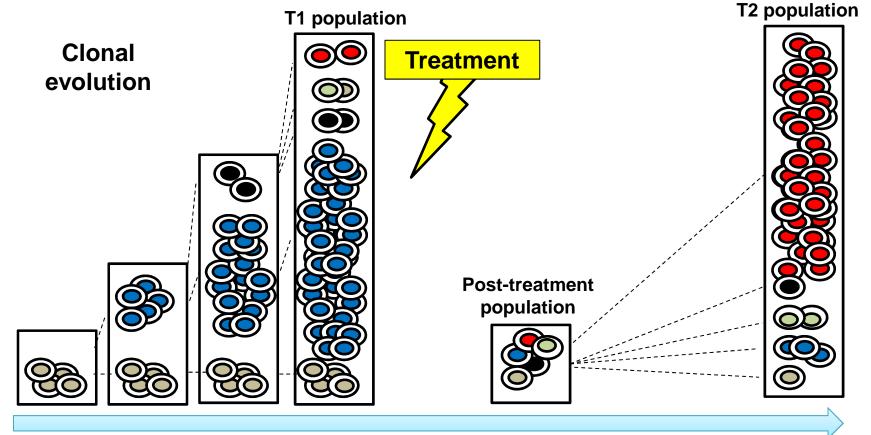

DPC4 Gene Status of the Primary Carcinoma Correlates With Patterns of Failure

Matastatia Durdan hu		Loca	lly Destructi	ve		Locally	y Confined		
Metastatic Burden by Gene for Primary Ca	0		1-1(1-10		11-99		100s-1,000s	
rcinoma	No.	%	No.	%	No.	%	No.	%	
KRAS2 (n = 59)	6/7	86	11/11	100	19/21	90	20/20	100	.283
		17/	/18; 94%			39/4 ⁻	1; 95%		.672
TP53 (n = 58)	6/6	100	6/11	54	16/21	76	18/20	90	.083
		12/	12/17; 71%		34/41; 83%			.037	
SMAD4 (DPC4) (n = 65)	2/9	22	5/11	45	17/24	71	16/22	73	.032
		7/20; 35%		33/46; 72%		; 72%		.007	

Rapid autopsies were performed on 76 patients

Iacobuzio-Donahue CA. J Clin Oncol. 2011

Correlation of Pattern of Progression With SMAD4 (DPC4) Expression



*P=0.016

Crane CH. J Clin Oncol. 2011

Clonal Mutation Prevalence

- Sensitive genotype vs. resistant genotype
- allelic ratio: pre-treatment vs. post-treatment

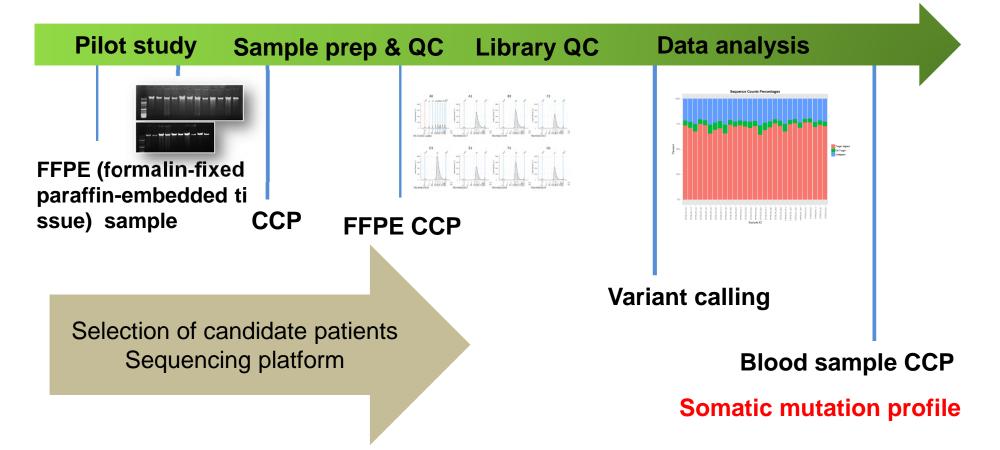
Time

A Phase II Study of Preoperative Chemoradiotherapy with Gemcitabine for Resectable Pancreatic Carcinoma

(ClinicalTrials.gov Identifier: NCT01333124)

Day	D1	D8	D15	D22	D29
Radiotherapy (RT) [PGTV: 48.4Gy/22Fx / PCTV: 44Gy/22Fx]	x x x x x	x	x x x x x	x	хх
GEM (800mg/m ²)	↑	↑	↑	↑	1

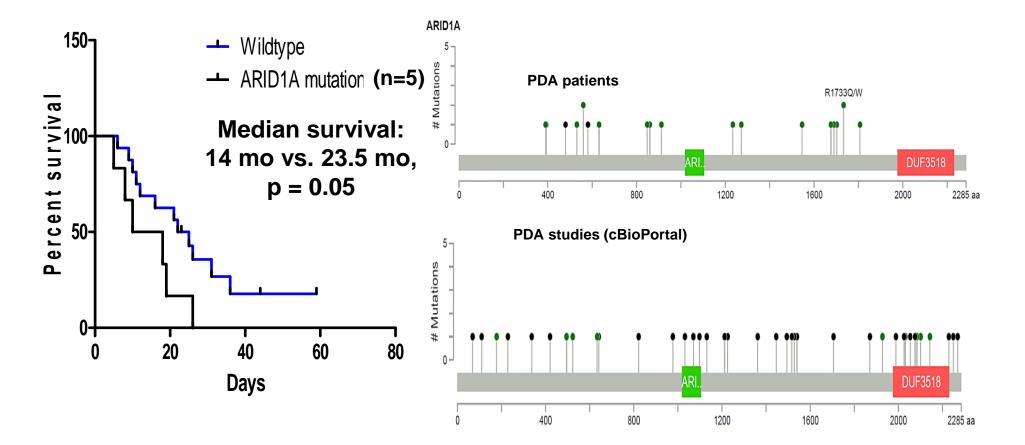
A Phase II Study of Induction Chemotherapy with Gemcitabine and Cisplatin followed by Simultaneous Integrated Boost-Intensity Modulated Radiotherapy with Concurrent Gemcitabine for Locally Advanced Unresectable Pancreatic Cancer


Woo SM. Cancer Res Treat. 2017

Before Chemotherapy

After SIB-IMRT

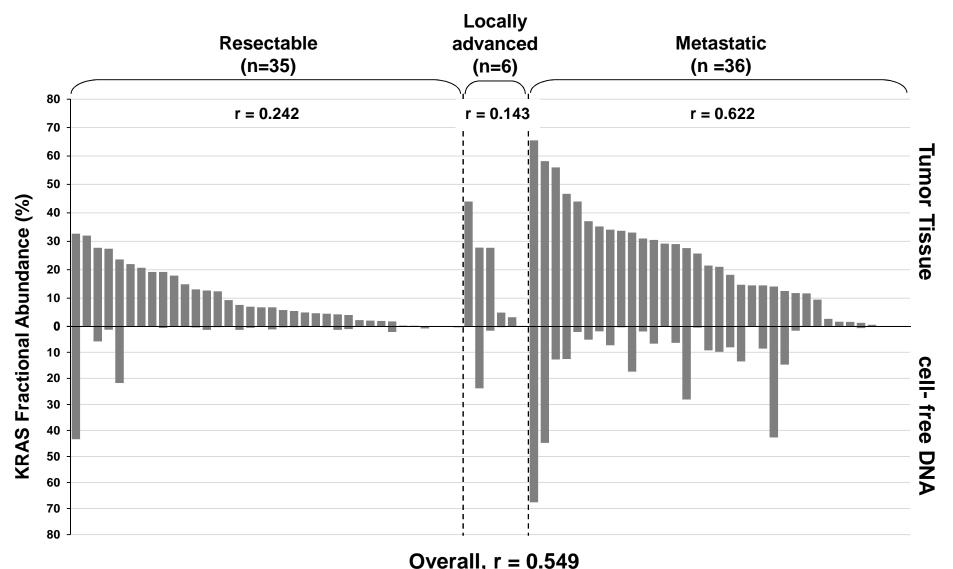
 Blood sample (Blood sampling and storage) 	↓					 Blood sample (Blood sampling a storage) 	nd ↓					
storage)	D1	D8	D15	D22	3 weeks	storage)	D1	D8	D15	D22	D29	
• GEM (10000mg/m ²)	♠	♠	♠			• SIB-IMRT [PTV1: 55Gy/22Fx /	*** *					
• Cisplatin (25mg/m ²)	↑	Ť	Ť			PTV2: 44Gy/22Fx] • GEM (300mg/m ²)	^	• • • • • • • •	↑	• • • • • • •	^	


Comprehensive Cancer Panel (CCP)

- Ion AmpliSeq CCP covering 409 genes (Ion Torrent, Life Technologies, Carlsbad, CA).
- Quality of the libraries 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA)
- Sequencing Nextseq 500 System platform, with 2 × 151 bp paired end sequencing runs (Illumina Inc., San Diego, CA).

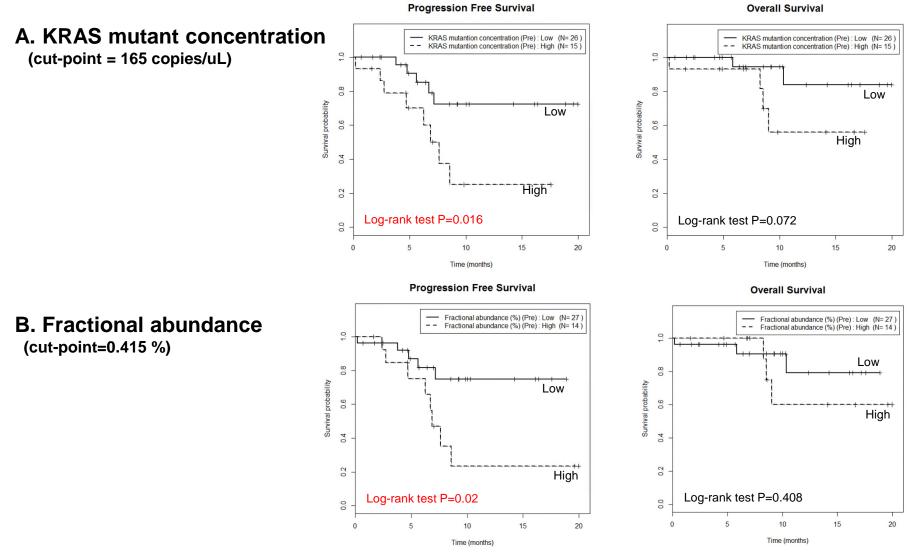
In submission

ARID1A Gene Mutations and the Association with Disease Outcome.


In submission

Somatic Mutations with Decreased Allelic Fraction after Treatment in at least 3 Patients

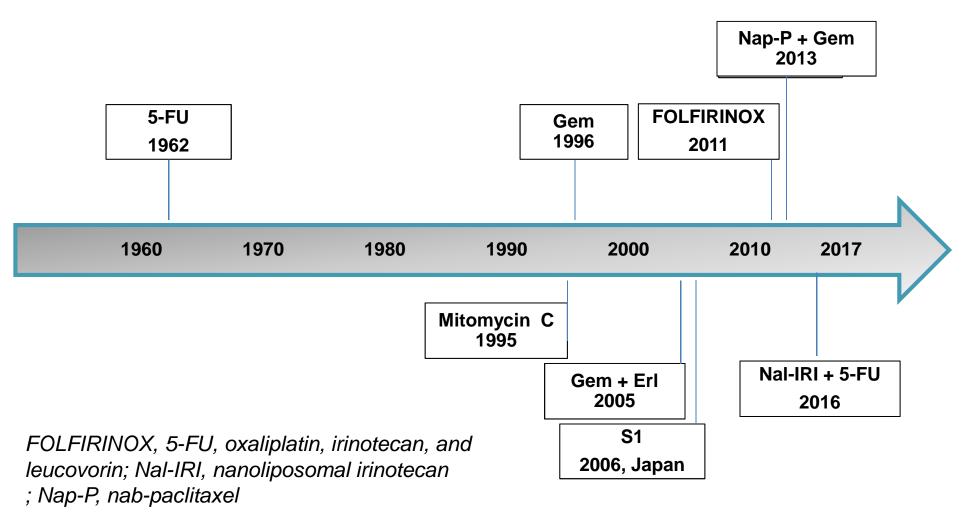
Gene	Description	Protein change	Patients
KRAS	Kirsten rat sarcoma viral oncogene homolog	G12*	6
WHSC1	Wolf-Hirschhorn syndrome candidate 1	P1020A	4
CDK6	cyclin-dependent kinase 6	p.N284H	3
DDB2	damage-specific DNA binding protein 2, 48kDa	p.W54L	3
EP300	E1A binding protein p300	p.G98A	3
ERCC3	excision repair cross-complementation group 3	p.V193L	3
FBXW7	F-box and WD repeat domain containing 7, E3 ubiquitin protein ligase	p.A105S	3
FLT3	fms-related tyrosine kinase 3	p.R655G	3
KAT6A	K(lysine) acetyltransferase 6A	p.M1389L	3
KAT6B	K(lysine) acetyltransferase 6B	p.Q1513E	3
KDR	kinase insert domain receptor (a type III receptor tyrosine kinase)	p.C246S	3
MMP2	matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)	p.E258Q	3
PSIP1	PC4 and SFRS1 interacting protein 1	p.A168G	3
TET2	tet methylcytosine dioxygenase 2	p.M1789I	3
ХРА	xeroderma pigmentosum, complementation group A	p.L226W	3
ZNF521	zinc finger protein 521	p.D25E	3


In submission

Comparison of KRAS mutation fraction between blood-cfDNA and tissue-DNA according to stage

Kim MK and Woo SM. Clin Chem. 2018

KM Curve according to KRAS Mutation in Resectable Pancreatic Cancer


Kim MK and Woo SM. Clin Chem. 2018

Contents

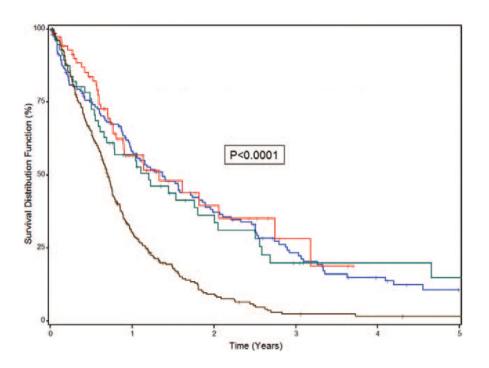
- 1. The role of systemic chemotherapy in the management of LAPC
- 2. Biomarker development to identify patients with rapidly progressive disease
 - SMAD4 or other candidates
- 3. Optimal chemotherapy regimen for LAPC

Key Milestones

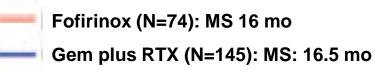
-Approvals for Metastatic Pancreatic Cancer (PC)-

European Medicines Agency, http://www.ema.europa.eu/ema/

First-line Treatment Options in Metastatic PC


	First-line Treatment	Median survival (mo)	
Good performance status	 FOLFIRINOX (preferred) Gem + nab-P (preferred) Gem + erlotinib 	Conroy (2011) Van Hoff (2013) Moore (2007)	8.5 6.2
Poor performance status	 Gem monotherapy 	Burris (1997)	5.6
	■ S1	Ueno (2013)	9.7

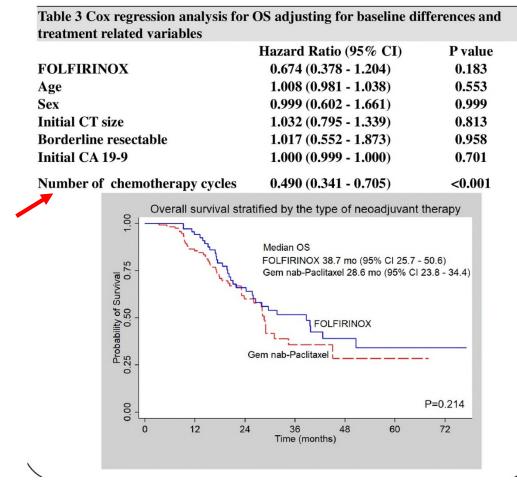
NCCN. Pancreatic adenocarcinoma. v2.2015. www.nccn.org.; Goldman-cCecil Medicine 25e


Neoadjuvant Therapy with FOLFIRINOX Results in Resectability in 60% of the LAPC Patients

• December 2001 and June 2015, University of Heidelberg

Resection rates	FOLFIRINOX	gemcitabine and radiation	others	Р
50.8%	61%	46%	52%	0.026
(292/575)	(76/125)	(150/322)	(66/128)	

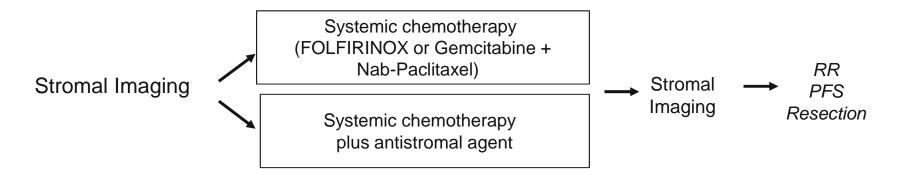
Overall survival after resection



- TP (N=57): MS 14.5 mo
- Expl./Bypass (N=248): MS 6.5 mo

Hackert T. Ann Surg. 2016

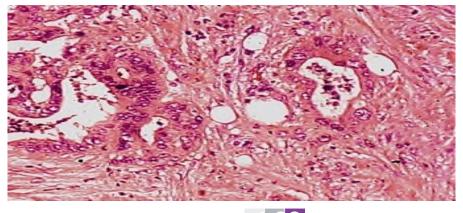
FOLFIRINOX versus Gemcitabine/nab-paclitaxel for Neoadjuvant Treatment of Resectable and Borderline Resectable PC : A Propensity Matched Analysis


• A single institution retrospective review (01/11-03/17)

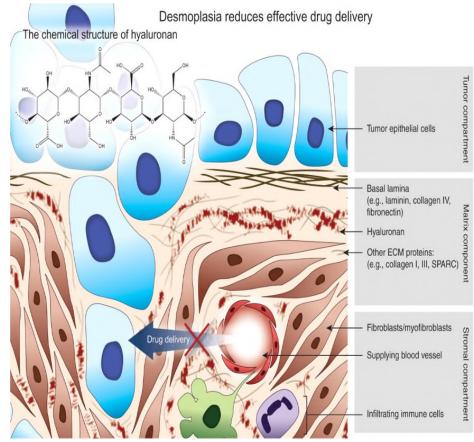
 In a propensity matched analysis of 166 patients using the same preoperative variables, the average treatment effect of FOLFIRINOX was to increase OS by 4.9 months above gemcitabine/nab-paclitaxel (p=0.012).

Dhir M. J Clin Oncol. 2018 (abstr 402)

Potential Clinical Trial Designs Targeting the Cancer Stroma in LAPC



Agents	Combination	Comments	ClinicalTrials.go v Identifier
PEGPH20 (recombinant hyaluronidase)	Nab-P + Gem (ph3)	 Hyaluronan-high patients previously untreated metastatic pancreatic cancer 	NCT02715804
Vitamin D analogues	Gem in mouse model	 vitamin D receptor regulate pancreatic stellate cells* Reprogramming the stroma 	-
Necuparanib	Nab-P + Gem (ph2)	 Terminated after a pre-planned futility analyses showed an insufficient level of efficacy 	NCT01621243
	CO		


Hidalgo M. Clin Cancer Res 2012

Hyaluronan: Major Component of the Extracellular Matrix

- PEGPH20: recombinant human hyaluronidase
- Hyaluronan degradation can
 - Normalize tumor interstitial pressure
 - Improve drug delivery

Slide credit: <u>clinicaloptions.com</u>

Reprinted from Cancer Discovery, 2011, Volume 1/Issue 4, pp 291-296, CJ Whatcott, et al., Targeting the tumor microenvironment in cancer: w hy hyaluronidase deserves a second look, with permission from AACR.

Phase II HALO-109-202: Preliminary Results

Pts with stage IV pancreatic can cer, no prior treatment for metast	Gemcitabine 1000 mg/m ² + Nab-Paclitaxel 125 mg/m ² 1 x/wk for 3/4 wks/cycle	Treat until progressio n, intolerable toxicity,
atic disease, KPS ≥ 70% (planned N = 279)	PEGPH20 3 µg/kg IV 2x/wk in cycle 1 then weekly + Gemcitabine 1000 mg/m ² + Nab-Paclitaxel 125 mg/m ² 1 x/wk for 3/4 wks/cycle	death, or choice to di scontinue

Outcome by Population	Gem + Nab-P + PEGPH20	Gem + Nab-P	P Value	HR
Total				
 Median PFS, mos 	5.7	5.2	.11	0.69
 ORR, % (n/N) 	41 (30/74)	34 (21/61)	.48	
HA-high				
 Median PFS, mos 	9.2	4.3	.05	0.39
 ORR, % (n/N) 	52 (12/23)	24 (5/21)	.04	
HA-low				
 Median PFS, mos 	5.3	5.6	.74	0.89
 ORR, % (n/N) 	37 (14/38)	38 (9/24)	.96	

Higher rate of thromboembolic events on PEGPH20-containing arm during first stage of enrollment (42% vs 25%); mitigated during second stage with addition of prophylactic enoxaparin^[1]

Phase III HALO-109-301 study of gem/nab-P ± PEGPH20 limited to HA-high pts currently enrolling^[2]

1. Hingorani SR, et al. ASCO 2015. Abstract 4006.

2. ClinicalTrials.gov. NCT02715804.

Summary and Conclusion

- Initial systemic therapy with combination regimens (FOLFIRINOX or Gemcitabine + Nab-Paclitaxel) is recommended for most LAPC patients with good PS.
- Molecular markers are needed better predict responses to specific treatments, including CRT, and to allow for more focused approaches to treatment selection.
- Systemic chemotherapy plus anti-stromal agent