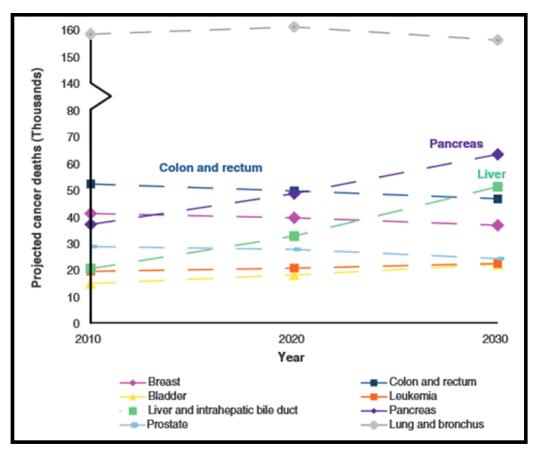


## Locally Advanced Pancreatic Cancer

#### Surgical Perspectives

Chang Moo Kang, MD.,PhD.


Division of HBP Surgery, Department of Surgery, Yonsei University College of Medicine Pancreatobiliary Cancer Center, Severance Hospital, Seoul, Korea



Perspective

#### Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States №

Lola Rahib<sup>1</sup>, Benjamin D. Smith<sup>2</sup>, Rhonda Aizenberg<sup>1</sup>, Allison B. Rosenzweig<sup>1</sup>, Julie M. Fleshman<sup>1</sup>, and Lynn M. Matrisian<sup>1</sup>



"Attention has been called to the projected top three cancer killers in 2030: *lung*, *pancreatic*, and *liver cancer*, through the Recalcitrant Cancer Research Act signed into law by President Obama in January 2013."

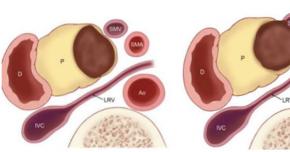
Cancer Res; 74(11) June 1, 2014

#### Pancreatic Cancer Surgery: Oncologic significance

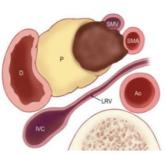
- "Margin-negative pancreatectomy is known to be the most effective monotherapy in treating pancreatic cancer."
- "Postoperative adjuvant chemotherapy should be mandatory for improving oncologic outcome."

# Chapter 10 OPEN ACCESS

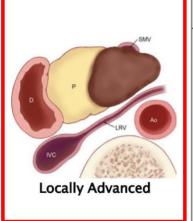
#### The Role of Vascular Resection in Pancreatic Cancer Treatment


By Nikola Vladov, Ivelin Takorov and Tsonka Lukanova DOI: 10.5772/66910

#### Advanced stage Borderline Locally **Pancreatic** Resectable Metastatic resectable advanced cancer Incidence 15-20% 7-10% 15-20% 60-70% Survival Dependent with optimal 22-24 mo 9-11 mo 6-11 mo on resectability treatment


# Resectability: 2017 NCCN guideline

Pancreatic Adenocarcinoma, Version 2.2017


#### CRITERIA DEFINING RESECTABILITY STATUS<sup>1</sup>



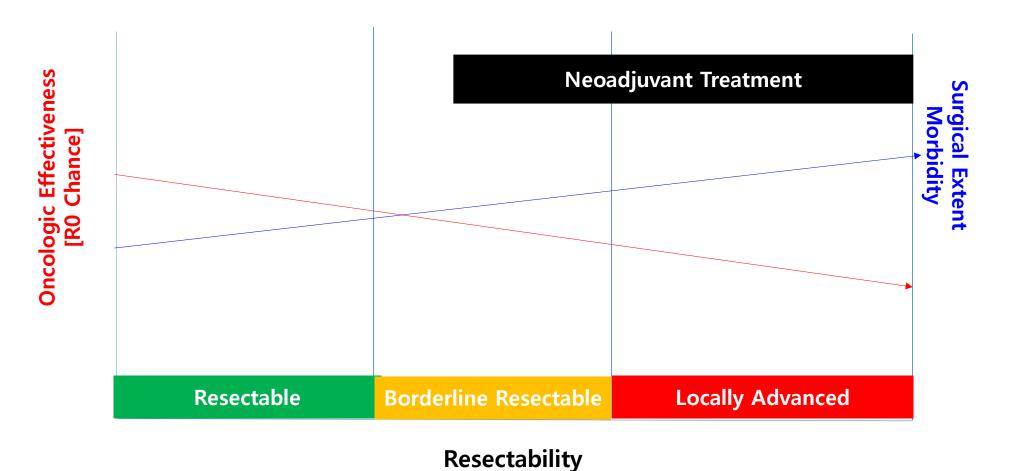
Resectable



**Borderline Resectable** 



| Resectability<br>Status               | Arterial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Venous                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resectable                            | No arterial tumor contact (celiac axis [CA], superior<br>mesenteric artery [SMA], or common hepatic artery<br>[CHA]).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No tumor contact with the superior mesenteric vein (SMV) or portal vein (PV) or ≤180° contact without vein contour irregularity.                                                                                                                                                                                                        |
| Borderline<br>Resectable <sup>2</sup> | Pancreatic head/uncinate process:  Solid turnor contact with CHA without extension to celiac axis or hepatic artery bifurcation allowing for safe and complete resection and reconstruction.  Solid turnor contact with the SMA of ≤180° Solid turnor contact with variant arterial anatomy (ex: accessory right hepatic artery, replaced right hepatic artery, replaced CHA, and the origin of replaced or accessory artery) and the presence and degree of turnor contact should be should be noted if present as it may affect surgical planning.  Pancreatic body/tail: Solid turnor contact with the CA of ≤180° Solid turnor contact with the CA of >180° without involvement of the aorta and with intact and uninvolved gastroduodenal artery thereby permitting a modified Appleby procedure [some members prefer this criteria to be in the unresectable category]. | Solid tumor contact with the SMV or PV of >180°, contact of ≤180° with contour irregularity of the vein or thrombosis of the vein but with suitable vessel proximal and distal to the site of involvement allowing for safe and complete resection and vein reconstruction.      Solid tumor contact with the inferior vena cava (IVC). |
| Unresectable <sup>2</sup>             | Distant metastasis (including non-regional lymph node metastasis)     Head/uncinate process:     Solid turnor contact with SMA >180°     Solid turnor contact with the CA >180°     Solid turnor contact with the first jejunal SMA branch      Body and tail     Solid turnor contact of >180° with the SMA or CA     Solid turnor contact with the CA and aortic involvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Head/uncinate process     Unreconstructible SMV/PV due to tumor involvement or occlusion (can be due to tumor or bland thrombus)     Contact with most proximal draining jejunal branch into SMV      Body and tail     Unreconstructible SMV/PV due to tumor involvement or occlusion (can be due to tumor or bland thrombus)          |


# **Definition Concept for Resectability**[Surgeon's view]

| Resectability                         | Oncologic Outcome                            | Surgical Extent                                                                                                     |
|---------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Resectable                            | High chance of R0 resection                  | Standard surgery: PD(PPPD) / DPS Acceptable morbidity and mortality                                                 |
| Borderline<br>Resectable              | High chance of R1 (or possible R2) resection | +Combined resection<br>/Extended dissection<br>/Technically "Reconstructable"<br>Acceptable morbidity and mortality |
| Locally Advanced (LAPC, Unresectable) | High chance of R2 resection                  | "Un-reconstructable" If any, high chance of morbidity and mortality <b>No oncologic benefit</b>                     |

# "Extended pancreatic resection can increase morbidity and mortality of pancreatic surgery"

| Author, year    | N (Total/ Extended) | Morbidity<br>(Extended vs. Standard) | Mortality<br>(Extended vs. Standard) | Comments      |
|-----------------|---------------------|--------------------------------------|--------------------------------------|---------------|
| Sasson, 2002    | 116/37 (31.9%)      | 35% vs. 39%                          | <u>2.7%</u> vs.1.7%                  |               |
| Shoup, 2003     | 57/22 (38.6%)       | *9% vs. 0%                           | <u>All 0%</u>                        | *Relaparotomy |
| Adam, 2004      | 301/41 (13.5%)      | 65.9% vs.36.9%                       | NA                                   |               |
| Suzuki, 2004    | 95/12 (12.6%)       | 50% vs.44.6%                         | 0%                                   |               |
| Kleeff, 2007    | 302/109 (36.1%)     | 34%vs. 23%                           | <u>5.5%</u> vs.0%                    |               |
| Nikfarjam, 2009 | 105/19 (18.1%)      | 68% vs. 58%                          | 0%                                   |               |
| Harwig, 2009    | 101/101 (100%)      | 36.6% vs.25.3%                       | <u>6.9%</u> vs. 3.5%                 |               |
| Burdelski, 2011 | 55/55 (100%)        | 69% vs. 37%                          | <u>7%</u> vs. 4%                     |               |

# Radical Pancreatectomy: Benefit ≥ Disadvantage



#### Neo-adjuvant therapy Rationales in pancreatic cancer

#### Table 2 Potential advantages of neoadjuvant therapy

Benefits of neoadjuvant therapy

The ability to deliver systemic therapy to all patients

Identification of patients with aggressive tumor biology (manifested as disease progression) at the time of post-treatment, preoperative restaging who thereby avoid the toxicity of surgery

Increased efficacy of radiation therapy; free radical production in a well oxygenated environment

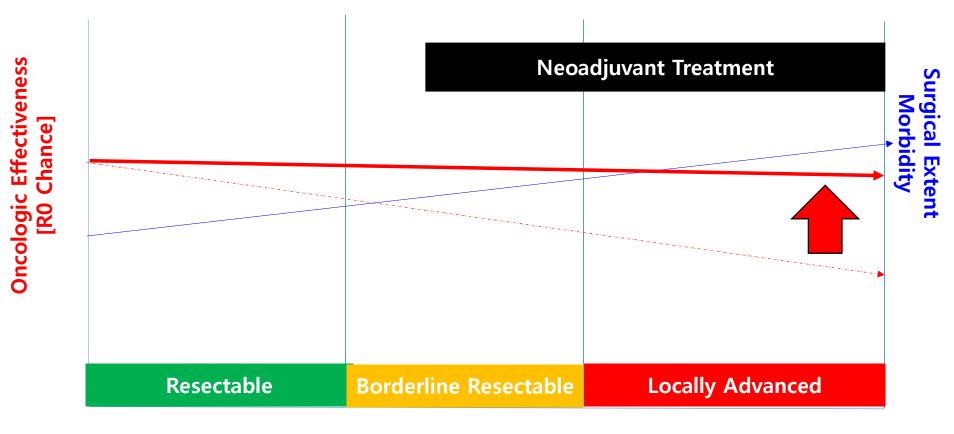
Decreased radiation induced toxicity to adjacent normal tissue as the radiated field is resected at the time of pancreatectomy

Decreased rate of positive resection margins; SMA margin in particular

Decreased rate of pancreatic fistula formation

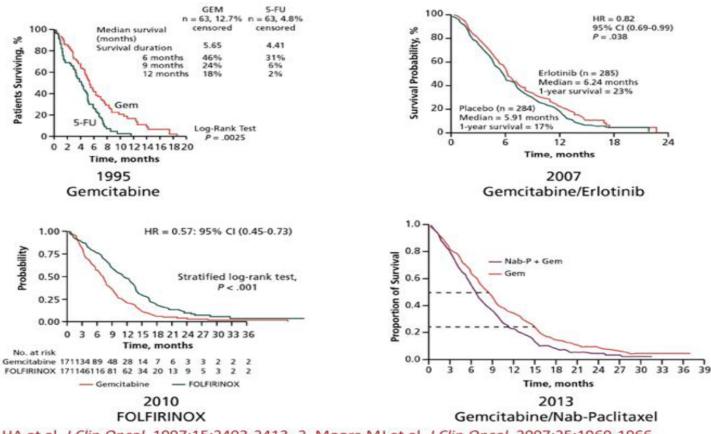
Potential for the downstaging of borderline resectable tumors to facilitate surgical resection

Disadvantages of neoadjuvant therapy


Potential for complications from pre-treatment endoscopic procedures

Biliary stent related morbidity; stent occlusion during neoadjuvant therapy

Disease progression obviating resectability; loss of a "window" of resectability which may occur (rarely) in the borderline resectable patient


Physicians have to work together during the preoperative phase; discrete handoff from surgeon to medical oncologist to radiation oncologist is not possible in the neoadjuvant setting (as occurs with adjuvant therapy)

## Radical Pancreatectomy: Benefit ≥ Disadvantage



Resectability

# Clinical Trials Potent chemotherapeutic agents for pancreatic cancer



- 1. Burris HA et al. J Clin Oncol. 1997;15:2403-2413. 2. Moore MJ et al. J Clin Oncol. 2007;25:1960-1966.
- 3. Conroy T et al. N Engl J Med. 2011;364:1817-1825. 4. Von Hoff DD et al. N Engl J Med. 2013;369:1691-1703.

## Considering issues in LAPC

Different Definition

NCCN

AHPBA/SSO/SSAT

Or, Ambiguous...

Different Chemotherapeutic Regimens

Treatment Reports LAPC

Different Resection Criteria Different Resection Rate Different Radiotherapy

## Rationale of surgical resection in LAPC

Survival benefit (Oncologic effectiveness) should be estimated in the same tumor conditions.

;Survival benefit over non-resected locally advanced pancreatic cancer without disease progression?

#### Systematic Review of Resection Rates and Clinical Outcomes After FOLFIRINOX-Based Treatment in Patients with Locally Advanced Pancreatic Cancer

TABLE 2 Outcomes after FOLFIRINOX-based treatment in patients with LAPC

| Author             | No. of patients | Treated with radiotherapy | Resection rate | R0 resection rate       | Complete pathologic | Response rate         | Median OS (months)                  | Grade 3–4 toxicity |
|--------------------|-----------------|---------------------------|----------------|-------------------------|---------------------|-----------------------|-------------------------------------|--------------------|
|                    |                 |                           |                |                         | response            |                       |                                     |                    |
| Blazer et al.8     | 25              | 15/25 (60)                | 11/25 (44)     | 10/11 (91)              | 0/11 (0)            | 2/23 (9) <sup>a</sup> | NR                                  | NR                 |
| Boone et al.9      | 13 <sup>b</sup> | 5/10 (50)                 | 2/10 (20)      | 1/2 (50)                | NR                  | NR                    | 8.9                                 | 5/10 (50)          |
| Conroy et al.10    | 11 <sup>c</sup> | 0 (0)                     | 0/11 (0)       | NA                      | NA                  | 3/11 (27)             | 15.7                                | NR                 |
| Faris et al. 11    | 22              | 20/22 (91)                | 5/22 (23)      | 5/5 (100)               | 1/5 (20)            | 8/22 (36)             | NRE, 3-year 7 %                     | NR                 |
| Gunturu et al. 12  | 16              | 0 (0)                     | 2/16 (13)      | NR                      | 0/2 (0)             | 8/16 (50)             | NRE, 6-month 94 %;<br>12-month 83 % | NR                 |
| Hohla et al. 13    | 6               | 0 (0)                     | 2/6 (33)       | NR                      | NR                  | NR                    | NR                                  | NR                 |
| Hosein et al.14    | 14              | 9/14 (64)                 | 6/14 (43)      | 5/6 (83)                | NR                  | NR                    | NR                                  | NR                 |
| Kraemer et al.15   | 7               | 0 (0)                     | 1/7 (14)       | 0/1 (0)                 | 0/1 (0)             | NR                    | NR                                  | NR                 |
| Mahaseth et al.16  | 20              | 10/20 (50)                | 4/20 (20)      | 3/4 (75)                | NR                  | NR                    | NR                                  | NR                 |
| Marthey et al.17   | 77              | 54/77 (70)                | 28/77 (36)     | 25/28 (89)              | 4/28 (14)           | 22/77 (28)            | 21.6                                | 20/77 (26)         |
| Mellon et al.18    | 21              | 21/21 (100)               | 5/21 (24)      | 5/5 (100)               | 0/5 (0)             | NR                    | NR                                  | NR                 |
| Moorcraft et al.19 | 13              | 7/13 (54)                 | 2/13 (15)      | 2/2 (100)               | 1/2 (50)            | 4/13 (31)             | 18.4                                | 7/13 (54)          |
| Peddi et al.20     | 19              | 4/19 (21)                 | 4/19 (21)      | NR                      | NR                  | NR                    | NRE                                 | 5/19 (26)          |
| Sadot et al.21     | 101             | 63/101 (62)               | 31/101 (31)    | 16/29 (55) <sup>d</sup> | 0/31 (0)            | 29/101 (29)           | 25                                  | 14/101 (14)        |
| Overall            | 365             | 208/362 (57)              | 103/362 (28)   | 72/93 (77)              | 6/85 (7)            | 76/263 (29)           |                                     | 51/220 (23)        |

The median overall survival was reported in five studies and ranged from 8.9 to 25 months; Ann Surg Oncol (2016) 23:4352-4360

# FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis

|                         | Number<br>of<br>patients       | Radiotherapy or<br>chemoradiotherapy                                                | Resection      | R0<br>resection |
|-------------------------|--------------------------------|-------------------------------------------------------------------------------------|----------------|-----------------|
| Boone <sup>22</sup>     | 10                             | 5 (50%)                                                                             | 2 (20%)        | 1 (50%)         |
| Conroy <sup>12</sup>    | 11                             | NR                                                                                  | 0              | NA              |
| Faris <sup>21</sup>     | 22                             | 20 (91%)                                                                            | 5 (23%)        | 5 (100%)        |
| Gunturu <sup>24</sup>   | 16                             | NR                                                                                  | 2 (13%)        | NR              |
| Hohla <sup>18</sup>     | 6                              | 2 (33%)                                                                             | 2 (33%)        | NR              |
| Hosein <sup>23</sup>    | 14                             | 9 (64%)                                                                             | 6 (43%)        | 5 (83%)         |
| Mahaseth <sup>19</sup>  | 20                             | 10 (50%)                                                                            | 4 (20%)        | 3 (75%)         |
| Marthey <sup>25</sup>   | 77                             | 24 (31%)                                                                            | 28 (36%)       | 25 (89%)        |
| Mellon <sup>28</sup>    | 21                             | 21 (100%)                                                                           | 5 (24%)        | 5 (100%)        |
| Moorcraft <sup>26</sup> | 8                              | NR                                                                                  | 2 (25%)        | NR              |
| Peddi <sup>20</sup>     | 19                             | NR                                                                                  | 4 (21%)        | NR              |
| Sadot <sup>29</sup>     | 101                            | 63 (62%)                                                                            | 31 (31%)       | 16 (52%)        |
| Total                   | 325                            | 154 (57%)                                                                           | 91 (28%)       | 60 (74%)        |
| roportions ar           | nd differ sligh<br>ng random-e | nwise specified. Totals we<br>ntly from pooled percent:<br>ffects modelling. NA=not | ages in Figure |                 |

|                               | Number of patients | Median follow-up*<br>(months; IQR) | Median overall survival<br>(months; 95% CI) | Median progression-free<br>survival (months; 95% CI) |
|-------------------------------|--------------------|------------------------------------|---------------------------------------------|------------------------------------------------------|
| Conroy <sup>12</sup>          | 11                 | 26.6 (26.0-33.4)                   | 15.7 (10.7-20.7)                            | 7.6 (3.6–12.0)                                       |
| Faris <sup>21</sup>           | 22                 | 54.0 (32.7-55.3)                   | 24.7 (19.0-30.3)                            | 11.8 (8.6-15.1)                                      |
| Gunturu <sup>24</sup>         | 16                 | 33.1 (11.4-49.3)                   | 25·3 (9·2-41·4)                             | 17-3 (13-5-21-2)                                     |
| Hohla <sup>18</sup>           | 6                  | Not calculable                     | 10.0 (4.0-16.0)                             | 3.0 (not calculable†)                                |
| Hosein <sup>23</sup>          | 14                 | 36.1 (32.9-38.8)                   | 32-7 (23-1-42-3)                            | 17-3 (5-9-28-7)                                      |
| Mahaseth <sup>19</sup>        | 20                 | 4.0 (4.0-4.0)                      | 21-2 (12-4-30-1)                            | 11.0 (5.4-16.6)                                      |
| Marthey <sup>25</sup>         | 77                 | 11-3 (7-8-17-6)                    | 21-1 (12-3-29-9)                            | 18-5 (12-9-24-1)                                     |
| Mellon <sup>28</sup>          | 21                 | 10.5 (7.3-20.1)                    | 24·0 (not calculable†)                      | 20-4 (6-5-34-3)                                      |
| Moorcraft <sup>26</sup>       | 8                  | 15.9 (15.4-16.3)                   | 18-4 (11-6-25-2)                            | 12.8 (not calculable†)                               |
| Peddi <sup>20</sup>           | 19                 | 11-4 (8-2-16-2)                    | Not reached                                 | 12-4 (7-2-17-6)                                      |
| Sadot <sup>29</sup>           | 101                | 12.0 (8.0-18.0)                    | 26.0 (19.3-32.7)                            | 16.0 (13.3–18.7)                                     |
| Pooled patient-<br>level data | 315                | 12-3 (8-0-20-5)                    | 24-2 (21-7–26-8                             | 15.0 (13.7-16.3)                                     |

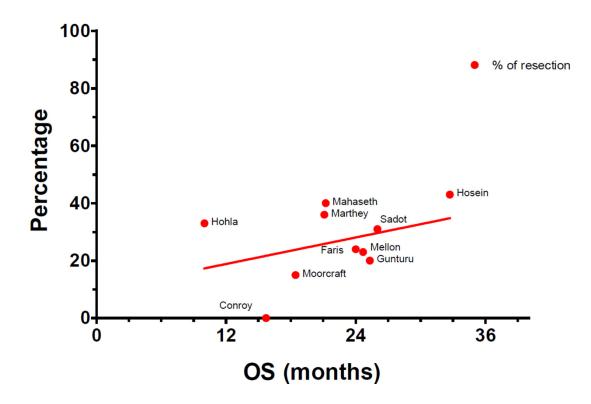
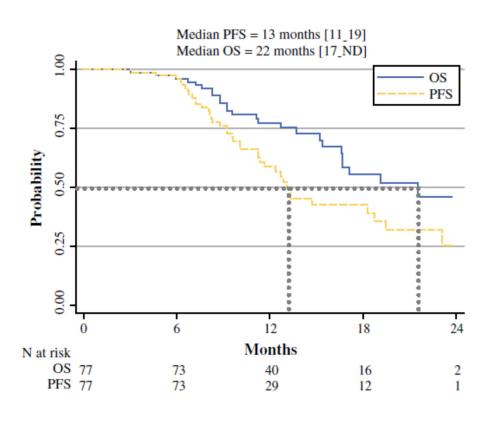

<sup>\*</sup>Of patients alive at last follow-up. †Because of small number of events.

Table 2: Median overall and progression-free survival


#### Resection vs. Non-resection without progression *Resection is benefit?*

"There was no significant correlation across studies between the proportion of patients undergoing resection and overall survival."





#### FOLFIRINOX for Locally Advanced Pancreatic Adenocarcinoma: Results of an AGEO Multicenter Prospective Observational Cohort



N=77 Resection rate= 28/77 (36%) R0 rate= 25/28 (89%)

Mortality=7%, Morbidity=43%

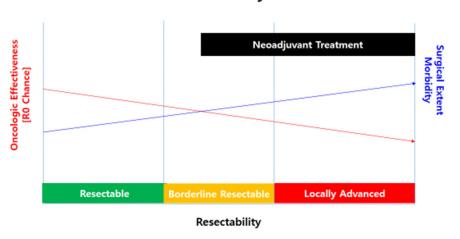
OS = 24.9 months [95% CI: 21.1-ND]

#### Resection vs. Non-resection without progression *Resection is benefit?*

# FOLFIRINOX induction therapy for stage III pancreatic adenocarcinoma

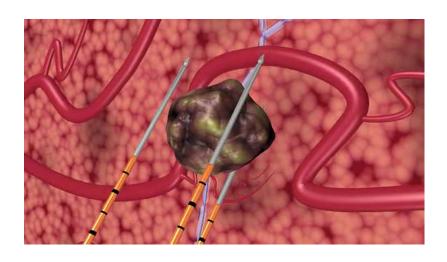
N = 101

Resection rate= 32/101 (31%) R0 rate= 16/29 (55%)

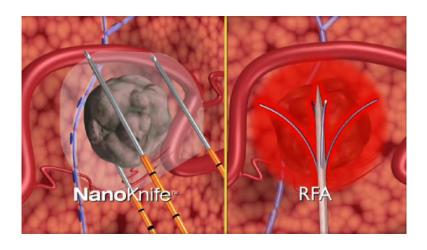

Mortality=?%, Morbidity=?%

R0-OS= "NOT REACHED MEDIAN SURVIVAL"

Non-resection with progression-OS=11months (95% CI:9-13)


\*Non-resection with progression free-OS = <u>26 months</u> (CI:18-33)

Radical Pancreatectomy: Benefit ≥ Disadvantage




Ann Surg Oncol. 2015 October; 22(11): 3512–3521

# Potential role of local ablation therapy IRE: Irreversible electroporation

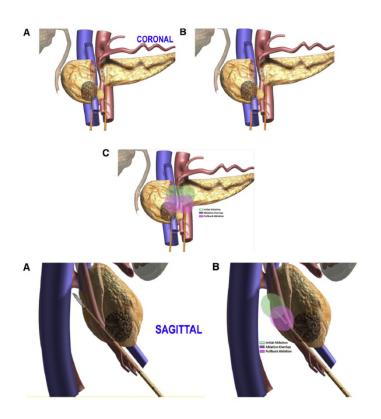


- Electrodes around the tumor
- Pulsed & direct electric current (2000V/cm)
- Cell membrane pore, apoptosis, and death



• Without causing significant heating of the tissues, sparing extracellular matrix and protein

# Borderline and locally advanced pancreatic adenocarcinoma margin accentuation with intraoperative irreversible electroporation


David Kwon, MD, FACS, a Kelli McFarland, MD, FACS, Vic Velanovich, MD, FACS, and Robert C. G. Martin, II, MD, PhD, FACS, Detroit, MI, Tampa, FL, and Louisville, KY

N=48 (LAPC:11 (PD)+10 (DP))

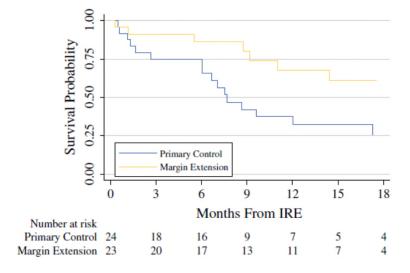
Preoperative Neo-CT/RT 100% R0 resection rate 66.7%

Morbidity 38% Mortality N/A

Median OS-22 months [95% CI: 17.9-24.9]








#### ORIGINAL ARTICLE - PANCREATIC TUMORS

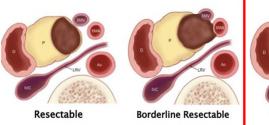
# Single-Institution Experience with Irreversible Electroporation for T4 Pancreatic Cancer: First 50 Patients

TABLE 1 Patient, tumor, and irreversible electroporation (IRE) characteristics

|                                     | All $(n = 53)$   | Primary treatment $(n = 29)$ | Margin extension $(n = 24)$ |
|-------------------------------------|------------------|------------------------------|-----------------------------|
| Median age: years (IQR)             | 66.5 (60.2–72.0) | 68.6 (63.4–73.8)             | 62.4 (56.1–68.6)            |
| Male gender: n (%)                  | 31 (58.5)        | 15 (51.7)                    | 16 (66.7)                   |
| Location: n (%)                     |                  |                              |                             |
| Head                                | 32 (60.4)        | 17 (58.6)                    | 15 (62.5)                   |
| Neck/body                           | 21 (39.6)        | 12 (41.4)                    | 9 (37.5)                    |
| Median tumor size: cm (IQR)         | 3.0 (1.7-5.0)    | 2.7 (2.4-4.0)                | 3.2 (2.0-4.5)               |
| Chemotherapy before IRE: n (%)      |                  |                              |                             |
| GTX/GAX                             | 29 (63.0)        | 14 (58.3)                    | 15 (68.2)                   |
| FOLFIRINOX                          | 7 (15.2)         | 3 (12.5)                     | 4 (18.2)                    |
| Other                               | 10 (21.8)        | 7 (29.2)                     | 3 (13.6)                    |
| Radiation therapy before IRE: n (%) |                  |                              |                             |
| Intensity-modulated                 | 5 (12.8)         | 3 (16.7)                     | 2 (9.5)                     |
| Stereotactic body                   | 34 (87.2)        | 15 (83.3)                    | 19 (90.5)                   |
| Operation: n (%)                    |                  | _                            |                             |
| Whipple/IRE                         |                  |                              | 15 (63)                     |
| Portal reconstruction               |                  |                              | 10                          |
| Distal/IRE                          |                  |                              | 7 (29)                      |
| Portal reconstruction               |                  |                              | 1                           |
| Appleby/IRE                         |                  |                              | 2 (8)                       |
| Portal reconstruction               |                  |                              | 1                           |



#### IRE vs. FOLFIRINOX without progression *IRE is benefit?*


#### "The mortality rate after IRE was higher than reported in other series"

30-day mortality: 7.6% 90-day mortality: 11.4%

| IRE                         | 5                | No details; presented to an outside hospital                                                                                                                                                                                                                                                                          | Yes |
|-----------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| IRE                         | 5 <sup>a</sup>   | Duodenal and bile duct necrosis; interventional radiology attempt at transhepatic drain insertion; hemorrhage requiring transfusion; operative reexploration; comfort care in support of advanced directives                                                                                                          | No  |
| IRE                         | 5                | Interventional radiology drain placement for deep surgical-site infection; reoperation for retroperitoneal fluid collection; hemorrhage requiring transfusion; interventional radiology placement of inferior vena cava stent for symptomatic stenosis; respiratory failure and intubation; multisystem organ failure | No  |
| Whipple, portal vein, & IRE | 5                | Early postoperative anemia, transfusion; cardiopulmonary arrest at home, no postmortem                                                                                                                                                                                                                                | No  |
| IRE                         | 5 <sup>a,b</sup> | Upper gastrointestinal bleed requiring endoscopy and transfusion; duodenal-cutaneous fistula; portal vein thrombosis that could not be anticoagulated; failure to thrive                                                                                                                                              | Yes |
| IRE                         | 5 <sup>a,b</sup> | Intraperitoneal hemorrhage requiring transfusion; angiogram embolization of gastroduodenal artery; multisystem organ failure                                                                                                                                                                                          | Yes |

#### Locally advanced pancreatic cancer; Surgeon's perspectives

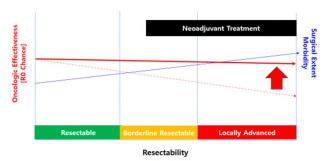
#### **Conclusions**





- Margin-negative resection is crucial for treating resectable pancreatic cancer.
- Currently, new emerging potential chemotherapeutic regimens are under tested. (FOLFIRINOX...)
- Extended pancreatectomy following neo-Tx will be choice for treating LAPC (if any).
- Natural course of non-disease progression after potent chemotherapy "FOLFIRINOX" also need to be investigated to estimate the oncologic role of surgical resection in treating LAPC.
- Surgical approach and modality in treating LAPC need to be determined with following considerations;

Oncologic benefit over observation following potent chemotherapeutic agents?


Potential surgery-related morbidity and mortality?

Improving quality of Life?

Increasing medical cost?

Intension-to-treat analysis







