Treatment of esophago-gastric junction and stomach cancer; differences and similarities

Are ESD indications same?

Division of Gastroenterology, Department of Internal Medicine, Kosin University Gospel Hospital, Sung Eun Kim

Contents

1. Overview of EGJ cancer

2. ESD indications for early gastric cancer (EGC)

3. Clinical outcomes of ESD for early EGJ cancer

Overview of EGJ cancer

The Siewert classification

Siewert JR, et al. Dis Esophagus 1996;9:173-182.

Incidence of EGJ cancer in West

Figure 1 Trends in incidence of adenocarcinoma of the esophagus, gastroesophageal junction (GEJAC), and noncardia stomach in the United States, 1973-2008 (per 100,000, adjusted for age, race, and sex to the 2000 U.S. standard population, with lowess smoothing).

Incidence of EGJ cancer in East

Figure 1 Changing rate in adenocarcinoma of esphagogastric junction (EJG) among all gastric adeocarcinoma. (___), no. of gastric adenocarcinoma; (-+-), proportion of adenocarcinoma of EJG amonth all gastric adenocarcinoma.

Kusano C, et al. J Gastroenterol Hepatol 2008;23:1662-1665.

Stomach lymphatic drainage

Incidence of metastasis to regional LN of EGJ cancer

Figure 1. Percentage of nodal involvement to each Japanese Gastric Cancer Association (*JGCA*) lymph node station according to the tumor location (Siewert type I, type II, and type III) for the 143 patients under study.

Pedrazzani C, et al. J Thorac Cardiovasc Surg 2007;134:378-385.

Overall survival for proximal gastric cancer

• Meta-analysis, 50 studies (N=123,268)

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.1.1 Proximal tumors						
Caruso 2002	0.3988	0.2216	2.0%	1.49 [0.97, 2.30]	2002	
Bajetta 2002	0.3667	0.2209	2.0%	1.44 [0.94, 2.22]	2002	
Persiani 2005	2.2665	1.1267	0.2%	9.65 [1.06, 87.78]	2005	
Rodriguez Santiago 2005	0.3549	0.2917	1.7%	1.43 [0.81, 2.53]	2005	
Bani-Hani 2005	0.1823	0.6287	0.7%	1.20 [0.35, 4.11]	2005	
Rohatgi 2006	0.198	0.168	2.3%	1.22 [0.88, 1.69]	2006	
Liu C 2007	-0.7215	0.5359	0.8%	0.49 [0.17, 1.39]	2007	·
Shen yj	0.1647	0.085	2.7%	1.18 [1.00, 1.39]	2007	
Tsujimoto 2009	0.3075	0.162	2.3%	1.36 [0.99, 1.87]	2009	
Park 2009	0.01	0.1922	2.2%	1.01 [0.69, 1.47]	2009	
Piessen 2009	0.6419	0.2789	1.7%	1.90 [1.10, 3.28]	2009	
Bilici 2010	0.3853	0.1865	2.2%	1.47 [1.02, 2.12]	2010	
Song 2010	0.446	0.241	1.9%	1.56 [0.97, 2.51]	2010	
Pedrazzani 2010	0.6313	0.2165	2.1%	1.88 [1.23, 2.87]	2010	
Zhu 2011	0.3853	0.1387	2.5%	1.47 [1.12, 1.93]	2011	
Wu 2011	0.3812	0.1299	2.5%	1.46 [1.13, 1.89]	2011	
Han 2012	0.2406	0.051	2.8%	1.27 [1.15, 1.41]	2012	-
Xu 2012	-0.1109	0.479	1.0%	0.90 [0.35, 2.29]	2012	
McGhan 2012	-0.5798	0.0398	2.8%	0.56 [0.52, 0.61]	2012	
Kang 2012	0.1398	0.2461	1.9%	1.15 [0.71, 1.86]	2012	
Chou 2013	-0.5621	0.2789	1.7%	0.57 [0.33, 0.98]	2013	
Qiu 2012	-0.3147	0.1962	2.2%	0.73 [0.50, 1.07]	2013	
Hsu 2013	0.2319	0.4299	1.1%	1.26 [0.54, 2.93]	2013	
Bamboat 2014	0.2469	0.163	2.3%	1.28 [0.93, 1.76]	2014	
Shim 2014	0.008	0.2318	2.0%	1.01 [0.64, 1.59]	2014	
Datta 2014	0.0862	0.044	2.8%	1.09 [1.00, 1.19]	2014	
Nagakawa 2015	0.5068	0.7942	0.4%	1.66 [0.35, 7.87]	2015	
Kurokawa 2015	0.2231	0.1139	2.6%	1.25 [1.00, 1.56]	2015	
Bruno 2016	0.1275	0.1132	2.6%	1.14 [0.91, 1.42]	2016	
Lee JW 2016	-0.0726	0.0705	2.8%	0.93 [0.81, 1.07]	2016	
Subtotal (95% CI)			58.9%	1.18 [1.01, 1.37]		◆
Heterogeneity: $Tau^2 = 0.13$; Ch	$ni^2 = 312.28, df = 29$ (I	o < 0.0000	1); $I^2 = 91$	%		

Test for overall effect: Z = 2.04 (P = 0.04)

Internal Medicine of Kosin University College of Medicine

Overall survival for EGJ cancer

1.1.2 carulas/GEJ					
Bouche 2005	0.3507	0.2051	2.1%	1.42 [0.95, 2.12]	2005
Kim 2005	0.4253	0.1369	2.5%	1.53 [1.17, 2.00]	2005
Marchet 2007	0.8713	0.3307	1.5%	2.39 [1.25, 4.57]	2007
Marrelli 2009	0.5247	0.2677	1.8%	1.69 [1.00, 2.86]	2009
Yu 2010	0.157	0.2337	2.0%	1.17 [0.74, 1.85]	2010
Strauss 2010	0.3221	0.0886	2.7%	1.38 [1.16, 1.64]	2010
Deans 2011	1.0647	0.2695	1.8%	2.90 [1.71, 4.92]	2011
Kunz 2012	0.2343	0.024	2.9%	1.26 [1.21, 1.32]	2012
Smyth 2012	0.3221	0.1593	2.4%	1.38 [1.01, 1.89]	2012
Jacome 2013	0.5653	0.3422	1.4%	1.76 [0.90, 3.44]	2013
Nelen 2013	-0.1393	0.1566	2.4%	0.87 [0.64, 1.18]	2013
Posteraro 2014	1.1848	0.4439	1.1%	3.27 [1.37, 7.81]	2014
Postlewait 2015	0.5306	0.3078	1.6%	1.70 [0.93, 3.11]	2015
Gu 2015	-0.2666	0.3938	1.2%	0.77 [0.35, 1.66]	2015
Liu K 2015	0.0119	0.2418	1.9%	1.01 [0.63, 1.63]	2015
Squires 2015	0.8372	0.2855	1.7%	2.31 [1.32, 4.04]	2015
Fiteni 2016	0.5158	0.1266	2.5%	1.67 [1.31, 2.15]	2016
Wang 2016	0.7816	0.0767	2.7%	2.18 [1.88, 2.54]	2016
In 2016	0.4114	0.1072	2.6%	1.51 [1.22, 1.86]	2016
Shen GS 2016	0.1906	0.1625	2.3%	1.21 [0.88, 1.66]	2016
Subtotal (95% CI)			41.1%	1.50 [1.32, 1.72]	

Heterogeneity: $Tau^2 = 0.05$; $Chi^2 = 84.48$, df = 19 (P < 0.00001); $I^2 = 78\%$ Test for overall effect: Z = 6.00 (P < 0.00001)

112 and a /CEI

ESD indications for EGC

ESD indications for EGC

- Gotoda T, *et al.* Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers. Gastric Cancer 2000;3:219-25.
 - Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer 2011;14:113-23.
 - Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 2017;20:1-19.

Expanded criteria of endoscopic treatment for EGC

Pathology		Muc		Submucosal		
	Ulcer		Ulcer (+)		<500 µm	>500 µm
	≤ 2 cm	> 2 cm	≤ 3 cm	> 3 cm	≤ 3 cm	Any size
Differentiat ed type	EMR /ESD	ESD	ESD	Surgery	ESD	Surgery
Undifferent iated type	Consider surgery	Surgery	Surgery	Surgery	Surgery	Surgery

Japanese gastric cancer treatment guideline 2014 (ver. 4)

Pathology		Muc		Submucosal		
	Ulcer (-)		Ulcer (-) Ulcer (+)			>500 µm
	≤ 2 cm	> 2 cm	≤ 3 cm	> 3 cm	≤ 3 cm	Any size
Differentiat ed type	EMR /ESD	ESD	ESD	Surgery	ESD	Surgery
Undifferent iated type	ESD	Surgery	Surgery	Surgery	Surgery	Surgery

Clinical outcomes of ESD for early EGJ cancer

Outcome parameters

- En bloc resection; a resection in a single piece
- **Complete resection**; successful en bloc resection, with lateral and vertical margins histologically free of carcinoma
- **Curative resection**; a complete resection that fulfilled the following pathological criteria

(1) intramucosal cancer, differentiated-type adenocarcinoma, no LVI, no ulcer findings, irrespective of tumor size

(2) intramucosal cancer, differentiated-type adenocarcinoma, no LVI, ulcer findings, tumor size \leq 3 cm

(3) minute submucosal cancer invasion \leq 500 μ m, differentiated-type adenocarcinoma, no LVI, tumor size \leq 3 cm

(4) intramucosal cancer, undifferentiated-type adenocarcinoma, no LVI, no ulcer findings, tumor size ≤ 2 cm.

Complication

- **Bleeding**; bleeding proven by endoscopic evaluation within 24-48 h, clinical evidence of melena or hematemesis, or massive bleeding requiring transfusion
- **Perforation**; endoscopically diagnosed during the procedure or by the presence of free air on plain chest radiography after ESD
- **Stenosis**; present when a standard 10-mm diameter endoscope could not be passed through the EGJ

Clinical Outcomes of Endoscopic Submucosal Dissection for Adenocarcinoma of the Esophagogastric Junction

Eun Jeong Gong¹ · Do Hoon Kim¹ · Hoonsub So¹ · Ji Yong Ahn¹ · Kee Wook Jung¹ · Jeong Hoon Lee¹ · Kee Don Choi¹ · Ho June Song¹ · Gin Hyug Lee¹ · Hwoon-Yong Jung¹ · Jin-Ho Kim¹

• Dec. 2004-Dec. 2011

Patients (number)	88
Age (years)	66 (59–71)
Male sex	80 (90.9)
Histologic differentiation	
Differentiated ^a	80 (90.9)
Undifferentiated ^b	8 (9.1)
Barrett's cancer	3 (3.4)
Macroscopic type	
Elevated	34 (38.6)
Flat	21 (23.9)
Depressed	33 (37.5)
Size of tumor (mm)	20 (14–25)
Depth of invasion	
Mucosa	65 (73.9)
Submucosa	23 (26.1)

Gong EJ, et al. Dig Dis Sci 2016;61:2666-2673.

Therapeutic outcomes

Adverse events	9 (10.2)
Bleeding	6 (6.8)
Immediate	1
Early delayed	4
Late delayed	1
Microperforation	3 (3.4)
Stricture	0 (0.0)
Hospital stay (days)	4 (4-5.3)
Result of resection	
En bloc resection	78 (88.6)
Complete resection	73 (83.0)
Curative resection	53 (60.2)
Lymphovascular invasion	2 (2.4)
Clinical outcome	
Local recurrence	2/84 (2.4)
Metachronous lesion	6/84 (7.1)

Predictive factors for non-curative resection

	Univariate analysis		Multivariate analysis		
	OR (95 % CI)	P value	OR (95 % CI)	P value	
Differentiation					
Differentiated	1		1		
Undifferentiated	13.0 (1.522-111.05)	0.019	18.682 (2.06-169.45)	0.009	
Macroscopic type					
Depressed	1		1		
Flat	1.333 (0.407-4.372)	0.635	1.181 (0.316-4.417)	0.805	
Elevated	3.378 (1.215-9.389)	0.020	4.154 (1.391-12.402)	0.011	
Size of tumor					
<20 mm	1				
≥20 mm	1.385 (0.586-3.269)	0.458			

Overall and disease-specific survival rates

 Median follow-up period; 68.5 mo (range; 24.4–123.5 mo)

Curati	ve vs. non-cu	irative res Su	rgery (n=9) oN0 stage 9 (100%)
	Curative $(n = 53)$	Noncurative $(n = 35)$	P value
Differentiation			0.006
Differentiated	52 (98.1)	28 (80.0)	
Undifferentiated	1 (1.9)	7 (20.0)	
Macroscopic type			0.045
Depressed	24 (45.3)	9 (25.7)	
Flat	14 (26.4)	7 (20.0)	
Elevated	15 (28.3)	19 (54.3)	
Size of tumor			0.457
<20 mm	27 (50.9)	15 (42.9)	
≥20 mm	26 (49.1)	20 (57.1)	
Criteria			< 0.001
Absolute	31 (58.5)	7 (20.0)	
Expanded	22 (41.5)	8 (22.9)	
Beyond expanded	0 (0.0)	20 (57.1)	

Clinical outcomes of ESD for early EGJ cancer

- Meta-analysis, 6 studies (359 lesions), 2010-2014
- Single-center, retrospective studies conducted in Japan.

Author	Age, year	Male (%)	Siewart clas- sification	Histologic type of lesion	Lesion size (mm)	Deep submucosal invasionª (%)	LVI (%)
Hirasawa et al. [12]	Mean 69.3 (range 36–85)	79.3	Type II	BA: 1, GC: 57	Mean 20.3 (range 3–50)	8.6	6.9
Hoteya et al. [13]	BA: mean 63.5 (SD 12.5) GC: mean 68.8 (SD 9.3)	83.6	Type II	BA: 25, GC: 103	BA: mean 20.2 (SD 17.6) GC: mean 21.8 (SD 15.8)	N/A	BA: 24.0 GC: 9.7
Omae et al. [14]	Mean 70.0 (range 42-84)	90.9	Type II	BA: 13, GC: 31	Mean 17 (range 5-47)	11.4	2.3
Yamada et al. [15]	Median 68 (range 39 - 88)	84.9	Type II	BA: 28, GC: 25	Median 20 (3-47)	24.5	7.5
Imai et al. [16]	Median 72 (range 41 - 89)	87.8	Type II	BA: 7, GC: 43	Median 22 (range 5–70)	22.0	10.0
Kagemoto et al. [17]	Mean 63 (SD 10)	91.3	N/A	BA: 26	Mean 19.0 (SD 13.6)	23.1	0.0

LVI, lymphovascular invasion; ESD, endoscopic submucosal dissection; BA, Barrett's adenocarcinoma; GC, gastric cardia cancer; IT, insulation-tipped ^a SM2 invasion (>500 µm from the muscularis mucosa) or more.

(A) En-bloc resection							
Author					Event rate and 95% Cl		
	Event rate	Lower limit	Upper limit	Total	Relative weight		
(B)			Cor	nplete	resection		
Author					Event rate and 95% Cl		
	Event rate	Lower limit	Upper limit	Total	Relative weight		
(C)			Cu	rative ı	resection		
Author					Event rate and 95% Cl		
	Event rate	Lower limit	Upper limit	Total	Relative weight		
Hirasawa <i>et al.</i> [12]	0.793	0.670	0.879	46 / 58	14.28		
Hoteya et al. [13]	0.742	0.660	0.811	95 / 128	36.75		
Omae et al. [14]	0.841	0.702	0.922	37 / 44			
Yamada et al. [15]	0.679	0.543	0.790	36 / 53	–– 17.33		
Imai <i>et al.</i> [16]	0.720	0.581	0.827	36 / 50	––– 15.13		
Kagemoto <i>et al</i> . [17]	0.731 0.746	0.533 0.698	0.866 0.789	19 / 26	7.68		

0.00

0.50

Park CH, et al. Dig Liver Dis 2015;47:37-44.

1.00

(A) Post-ESD bleeding							
Author					Event rate	and 95% Cl	
	Event rate	Lower (limit	Upper limit	Total			Relative weight
<u>(</u> B)			F	Perforation	Ì		_
Author					Event rate	and 95% Cl	
	Event rate	Lower limit	Upper limit	Total			Relative weight
(C)				Stenosis			
Author					Event rate	and 95% C	<u>l</u>
	Event rate	Lower limit	Upper limit	Total			Relative weight
Hirasawa et al. [12]	0.017	0.002	0.112	1 / 58		1	12.21
Omae et al. [14]	0.011	0.001	0.154	0 / 44	_ ⊨ _		6.98
Yamada et al. [15]	0.094	0.040	0.207	5 / 53			30.14
lmai <i>et al</i> . [16]	0.060	0.019	0.170	3 / 50	₽		24.18
Kagemoto et al. [17]	0.154	0.059	0.345	4 / 26			26.50
	0.069	0.032	0.140		♦		
					0.00	0.50 1.00	

Long-term clinical outcomes of ESD for EGJ cancer

• Period of follow-up; median 35.8 mo (range, 33.0-73.2 mo)

Curative resection criteria	Curative rese	ection	Non-curative	Cause-	
	Local recur	Distant mets	Local recur	Distant mets	mortality
Gastric cancer (GC)	0/46	0/46	0/12	0/12	0/58
GC	0/95	0/95	0/33	1/33	1/128
GC	0/37	0/37	0/7	0/7	0/44
GC	0/36	0/36	3/17	0/17	2/53
GC	0/36	0/36	0/14	1/14	0/50
Esophageal cancer	0/19	0/19	0/7	0/7	0/26
Total	0/269	0/269	3/90 (3.3%)	2/90 (2.2%)	3/359

Indication for endoscop		Total $(n = 256)$	LNM $(-)$ $(n = 235)$	LNM $(+)$ $(n = 21)$	P value
metastasis in natients v	Age (years), mean ± SD	60.0 ± 9.6	60.1 ± 9.6	58.6 ± 10.0	0.590
metastasis in patients (Sex, n (%)				1.000
	Male	204 (79.7)	187 (79.6)	17 (81.0)	
leung Hui Pyo ¹ · Hyuk Lee ² · Yan	Female	52 (20.3)	48 (20.4)	4 (19.0)	
Haaiin Vaa ⁴ , Saahyun Ahn ⁴ , Jaa J	Siewert type, n (%)				0.092
Heejin too • Soonyun Ann • Jae J	II	168 (65.6)	158 (67.2)	10 (47.6)	
• Jan 2002-Mar 2017	III	88 (34.4)	77 (35.8)	11 (52.4)	
	Extent of surgery, n (%)				1.000
	Total gastrectomy	239 (93.4)	219 (93.2)	20 (95.2)	
	Proximal gastrectomy	17 (6.6)	16 (6.8)	1 (4.8)	
	Extent of nodal dissection, n (%	5)			0.938
	D1 +	19 (7.4)	18 (7.7)	1 (4.8)	
	D2	127 (49.6)	117 (49.8)	10 (7.9)	
	D2 +	110 (43.0)	100 (42.6)	10 (9.1)	
	Number of dissected lymph nodes, mean ± SD	41.3 ± 17.9	41.3 ± 18.4	40.9 ± 10.9	0.890
	Macroscopic type, n (%)				0.048
	Elevated	54 (21.1)	45 (19.1)	9 (42.9)	
	Flat	47 (18.4)	45 (19.1)	2 (9.5)	
	Depressed	141 (55.1)	133 (56.6)	8 (38.1)	
	Mixed	14 (5.5)	12 (5.1)	2 (9.5)	
	Tumor size (cm), mean ± SD	3.2 ± 2.0	3.1 ± 1.7	4.8 ± 3.1	0.003
	Histology, n (%)				0.649
	Differentiated	157 (61.3)	143 (60.9)	14 (66.7)	
	Undifferentiated	99 (38.7)	92 (39.1)	7 (33.3)	
	Depth of invasion, n (%)				< 0.001
	Μ	94 (36.7)	94 (40.0)	0 (0)	
	SM1	46 (18.0)	44 (18.7)	2 (9.5)	
	SM2	43 (16.8)	36 (15.3)	7 (33.3)	
	SM3	73 (28.5)	61 (26.0)	12 (57.1)	
	Lymphovascular invasion, n (%)			< 0.001
	Negative	213 (83.2)	204 (86.8)	9 (42.9)	
Internal Medicine of Kosin University College of Medicine	Positive	43 (16.8)	31 (13.2)	12 (57.1)	

Predictive factors for LN metastasis

	Univariate analysis		Multivariate analysis	
	OR (95% CI)	P value	OR (95% CI)	P value ^a
Age	0.97 (0.93-1.02)	0.278		
Sex		0.883		
Male	1.00			
Female	1.09 (0.34-3.52)			
Macroscopic type		0.237		
Elevated or flat	1.00			
Depressed	0.57 (0.23-1.44)			
Tumor size	1.43 (1.14-1.78)	0.002	1.42 (1.10-1.82)	0.007
Histology		0.662		
Differentiated	1.00			
Undifferentiated	0.81 (0.31-2.12)			
Depth of invasion		0.056		
SM1	1.00			
SM2/3	4.31 (0.96-19.31)			
Lymphovascular invasion		< 0.001		0.002
Negative	1.00		1.00	
Positive	5.63 (2.15-14.71)		5.13 (1.88-14.06)	

No LNM in T1a cancers

Incidence of LN metastasis in Siewert II/III cancer

	Mucosal cancer			Submucosal cancer				
	UL (-)		UL (+)		SM1		SM2/3	
	$\leq 2 \text{ cm}$	> 2 cm	\leq 3 cm	> 3 cm	\leq 3 cm	> 3 cm	Any size	
Differen- tiated (n %, 95% CI)	0/94 (0)				0/19 (0)	1/20 (5.0, 0.0–14.6)	13/70 (18.6, 9.5–27.7)	
Undiffer- entiated (n %, 95% CI)		_		_		1/7 (14.3, 0.0–40.2)	6/46 (13.0, 3.3–22.8)	

LVI lymphovascular invasion, UL ulcer, SM1 submucosal invasion <500 µm

Conclusions; Tumor size and LVI were associated with LNM in patients with early Siewert type II/III gastric cancer, and the expanded indication for endoscopic resection may be used.

Summary

- EGJ cancer is difficult in many ways.
- The treatment outcomes of ESD for early stage EGJ cancer are generally acceptable.
 - -> a practical treatment option
- Few studies have considered ESD indication for EGJ cancer (including LN metastasis).
 - -> Curative resection
 - -> Non-curative resection -> LN metastasis (?)

-> Distant metastasis (2.2%)

• Further prospective studies with large number of patients are acquired to confirm the reliable ESD indication for EGJ cancer.

THANK YOU FOR YOUR ATTENTION.